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Abstract 

 The creative process for composing large literary works takes a lot of time. The writing 

itself is the largest time sink, but the editing and following revising process also takes a lot of 

time. This is primarily due to the fact that humans are limited in terms of the speed that they are 

able to read a work and then subsequently communicate their feedback to the author. 

Natural language processing (NLP) is a computer science and data science topic that 

has garnered a lot of public interest over 2023 due to the release of tools such as ChatGPT. 

One of the features of NLP is the ability to perform analysis on literature. Some of the current 

capabilities include sentiment analysis (is a work positive, neutral, or negative), named entity 

recognition (what people, places, organizations, etc. are mentioned), and detecting whether 

something is sarcastic or not. These tools can be used to provide more immediate feedback to a 

writer and may even be able to notice details that experienced editors might miss. However, 

these tools are often only available online and require the submission of data that a user may 

want to keep confidential. 

 The aim of this thesis is to show there can be a viable application that runs locally a 

user’s computer that can perform some natural language processing tasks. This program needs 

to be simple to use, perform effective analysis, and enable the end user to explore the data in 

meaningful ways. The target audience for this product would include writers, editors, publishers, 

and data scientists. 

To this end, existing software libraries were examined for functionality, accuracy, and 

speed. Suitable components were selected and incorporated into a single tool. Existing 

concepts such as version control for software development and known NLP functionality were 

combined in new ways. That proof-of-concept tool was then used to produce sample results to 

show the viability of the product.
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Introduction 

Literary analysis comes in many forms. Simple analysis can take the form of plot 

summaries or character profiles. More complex analysis can involve complex comparisons of a 

story’s themes, verification of historical events, and attempting to attempting to read between 

the lines to find hidden meanings. Whatever the study is, they all have a common element: the 

text must first be read by a human before any conclusions can be drawn. 

In recent years, as computers have grown more powerful and algorithms have grown 

more complex, it has become possible for computers to perform complex literary analysis. 

Some examples of this sentiment analysis (determining whether a work is positive, neutral, or 

negative), sarcasm detection, detecting hate speech, and named entity recognition (identifying 

characters, organizations, places, name of products, etc.) 

The goal of this research is to show a proof-of-concept tool that allows an end user to 

perform literary analysis. This tool will not replace any person in the creation of a literary work, 

but it should increase the productivity of the humans in that process. With that in mind, this 

design of this program has a few key concepts that should be adhered to. 

Firstly, this tool should work offline. This is for the prime reason that many people are 

rightfully concerned about submitting content to some online artificial intelligence. How exactly 

artificial intelligences and machine learning algorithms use and disseminate data they receive 

as input is often obfuscated, either intentionally by the organization controlling the algorithms or 

unintentionally by the developers due to the complex nature of models that may be used in the 

development of the tool, such as a neural network. Having this as a requirement also makes the 

application more reliable. Internet connections are ubiquitous, but no connection is guaranteed 

to work one hundred percent of the time; it would not be acceptable for a large section of the 

program to stop working without being connected. 
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Additionally, the program should showcase three different types of metrics to measure a 

work by. Some of these metrics are easier to implement than others. The purpose of including 

easier metrics is to showcase what a fully developed application may look like. As many metrics 

as possible should have interactive data displays so that the user can find the data that they 

need. 

The first type of metric comprises of basic statistics that are simple to compute. The 

purpose for including these metrics is to give the user a more complete experience; the user 

should have to use the fewest amount of programs to get the data they need. Some of those 

statistics include word counts, word frequencies, and words written per revision. 

The next type of metric is slightly more advanced and not as easy to implement, but can 

often be found in other programs. Examples of this include the Flesch Reading Ease, Flesch-

Kincaid Grade Level, number of sentences, and part of speech usage. Some natural language 

processing libraries offer this functionality, but are typically harder to implement with access to 

the said libraries. 

The last type of metric should be something completely new or something that combines 

existing analysis in a new and interesting way. The avenues explored here will be attempting to 

score a named entities “presence” within a work, breaking down the emotional tone of a work on 

a per-paragraph or per-sentence basis, and combining entity presence scores with emotional 

scores to get a metric of how a story feels when specific entities or groups of entities are 

present. 

The second key concept is that it can be difficult or impossible to change the content of a 

literary work when attempting to analyze it. As such, errors can occur that will degrade the 

effectiveness of any applied metrics. This is especially true for rough drafts where there could 

be many typos or incomplete ideas. Consequently, a way needs to be developed for the user to 

process a work and then clean the input without having to directly modify the original work. To 
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this end, this application will allow the user to clean the results of the named entity recognition 

process as an example of this functionality. 

The next major concept is that the user should be able to explore the resulting data in 

meaningful ways. This will be accomplished by presenting the data in an interactive dashboard. 

Interactivity will be defined as having a chart that can zoom in and out on key data points, filter 

data from the display, and have other miscellaneous user options such as changing the colors 

or transparency on a chart. In case the user is not able to examine the data in the way that they 

want to, an option to export any data creates will also need to be created. 

The last major concept will be applying some of the concepts of software version control 

software to literary works. Other applications already allow a user to save versions of their 

documents. This program should allow a user to apply some of the aforementioned metrics to 

multiple revisions of a literary work and display the differences. Furthermore, a separate 

windows service will be developed that will run invisibly in the background on a user’s system. 

This service will track changes to files of interest. When the user next opens the application, 

they will be presented with a list of revisions that they can process. 

Finally, the program should be easy enough to use for the average person. The program 

should also run fairly quickly. This is important as not many users are willing to wait around for 

hours for analysis to be done on their work. The interface should not be overly complicated. 

The above mentioned tasks constitute a large problem to be solved. The work will be 

limited with a focus on showing all of the above concepts functioning. When possible, existing 

libraries will be used to speed up development time. 

Metrics created should show why and how they’re useful. Polishing the analytics to 

handle every edge case should not be the primary concern. Relatedly, machine learning 

algorithms are never entirely accurate in their predictions. It is possible to tune algorithms and 

models, but the focus should be on getting tangible results, not near-perfect results. 
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Tasks in the sphere of natural language processing can be boundless in scope. Feature 

creep is a real possibility with software like this. Any additional ideas that may add the impact of 

this software will have to be weighed against the cost in time it would take to add those features. 

Therefore, this thesis should show mastery in programing fundamentals, software 

design, user interface design, database design, design and application of appropriate 

algorithms, and data cleaning and analysis/visualization.  

To demonstrate these points, an application was developed that allows literary writers, 

editors, publishers, and data scientists to analyze literary works in new ways. The novel aspects 

of this application involve applying existing concepts of software version control to literary 

works, allowing an end user to easily clean data which generally can’t be modified before it is 

input into the system, and devising new metrics that can be used to gain insight into literary 

works that usually require a human touch to generate. The combination of all these things 

produces a result that fits into a niche in software design that isn’t well explored as of the writing 

of this document. 

The results were a program that shows aspects of each objective being met. In the 

future, the program could be enhanced with other metrics and additional capabilities to make it 

even more useful to the target audience. 
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Background 

Previous + Current Research 

Computer assisted literary analysis is not a new concept. Automated analysis has been 

happening since the first time a programmer created a word count on a document or measured 

the frequency of the number of times each word appeared in a document. As with many areas 

of research, the level at which this analysis can be performed has increased vastly in the last 

decade or two. Advancements with new techniques and new models, along with greater access 

to increased processing power, storage, and data, has lead to a rapid rise in the number of 

topics in literary analysis. 

“With recent leaps in Computer Science, computational literary criticism has taken on 

new forms and moved beyond the world of word frequency analysis. For instance, Martin 

Paul Eve uses information retrieval techniques to identify anachronistic language in 

Cloud Atlas, a novel in which chapters are set in different time periods. By writing a 

Python script to query and cross-check word origins, Eve is able to explore the 

relationship between historical fiction and historical accuracy in Mitchell’s novel. At the 

Literary Lab, the Microgenres project uses machine learning to “identify points at which 

authors incorporate the language and style of other contemporary disciplines into their 

narratives.” (What Can Computer Algorithms Tell Us about Literature?, n.d.) 

A group of researches further expands what is possible by creating a list of qualitative 

analysis techniques. That list can be seen in Figure 1. 
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Figure 1 Possible Qualitative Analysis for Search Syntheses (Onwuegbuzie et al., 2012) 
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To perform computer-based literary analysis, a few steps must be taken. First, literary 

works must be selected, then selectively edited, and finally analyzed. The selective editing 

process can be summarized as: 

Some typographic elements may need to be addressed. For example, to prevent dashes 

from being treated as hyphens by some text-analysis software, spaces may need to be 

added before and after them. In most electronic texts, apostrophes and opening and 

closing single quotation marks are identical; this is especially problematic for dialect 

forms, scare quotes, quotation within quotation, and dialogue marked with single 

quotation marks. It may be necessary to examine every apostrophe and single quotation 

mark and perhaps delete each one that is not an apostrophe or replace it with a double 

quotation mark or acute accent. Literature written before about 1800 presents additional 

problems, such as variant spellings, frequent and variable editorial intervention, and a 

high proportion of anonymous texts and texts of doubtful authorship. (Hoover, 2013) 

Data scientists routinely have to “clean data” as part of their job. This process, while 

nothing out of the ordinary for a traditional researcher, may be too many steps for the average 

person who wants to use a computer to gain insight into a work. This project will aim to create a 

data cleaning tool for non-data scientists to clean the data needed to perform analysis. 

Kurt Vonnegut, famed author, attempted two master theses of his own. The thesis of 

note here is where he describes stories as having a “shape” to them. 

Vonnegut submitted two Master’s theses that were both, unfortunately, rejected. In one 

thesis, he presented the idea that stories have a shape, based on the happiness of 

characters over the span of the work. For instance, a character can start the story 

contented, then hit a low point, only to rally at the end. Think of Cinderella or Star Wars. 

Or a character can start at a low place, then end up happy or sad at the end, and so on. 

(abonato99, 2016) 

Figure 2, drawn by Vonnegut himself, illustrates some of the shapes he talks about. 
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Figure 2 Screengrab From a Recording of Kurt Vonnegut in 1985 Talking About The Shape of Stories (David 
Comberg, 2010) 

The shape of three different stories as described by Vonnegut, represented by three lines on a graph. 

At the times Vonnegut defended his thesis and drew this chart, computers were not able 

to perform the type of analysis he described. In the intervening decades, processing power has 

dramatically increased and many new techniques have been developed. These advances have 

given way for literary analysis as done by a computer to prove Vonnegut’s thesis.  

A team of researchers at the University of Vermont developed a technique to 

computationally create the shape of a story by measuring it’s “happiness ranking.” A short 

summary of how this was done follows: 

How does the UVM team turn the happiness of a story, or parts of a story, into numerical 

values? By analyzing it at the word level. To begin, they decided to create an emotional 
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ranking system for a large quantity of words. They arranged for 10,000 of the most 

frequently used words, in 10 different languages, to be rated by 50 people on a 

happiness scale of 1 to 9. 

Why not a more conventional 1-to-10 scale? For calculation purposes, Danforth 

said, there had to be a neutral middle value. The words with the happiest ranking, 

Reagan noted, are “love,” “laughter” and “happiness.” 

To plot out what Reagan called a story's “emotional signature,” the researchers 

calculate the happiness average of a story segment using the rankings and occurrence 

of particular words. For statistical viability, segments are approximately 10,000 words 

long. So the happiness average of pages 1 through 20 of a novel is plotted beside the 

average for pages 2 through 21, and so on — overlapping to provide the richest analysis 

possible. As Danforth put it, “the instrument is about trying to rigorously quantify 

differences in word usage." (Jones, 2016) 

The results of this process can be seen in Figure 3. 

 

Figure 3 The "Shape" of Harry Potter and the Deathly Hallows by J.K. Rowling (Jones, 2016) 
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The team behind this image analyzed one thousand, seven hundred and thirty-seven 

stories. From the accumulated analysis, they came to the conclusion: “One of the most 

prominent findings of the group's research is that the emotional arc of most human narratives — 

defined as the trajectory of overall positive and negative feelings — fits one of six distinct 

shapes.” (Jones, 2016). The discrete number of shapes is tied to a specific evaluation metric. If 

there are other metrics that can be used to evaluate a story, does that mean other shapes are 

possible? 

Decades ago, Vonnegut himself stated: “There’s no reason the simple shapes of stories 

can’t be fed into computers. They are beautiful shapes.” (David Comberg, 2010) This project 

aims to do just that. Others have already proven Vonnegut’s thesis, but this project does so not 

by producing a single shape for a story, but by producing multiple shapes for each character in 

the story. 

Personal Tools 

There are a number of publicly available tools that can assist writers with creating a 

literary work. Broadly speaking, the features present in these tools will be organized into six 

categories. Many available programs fall into multiple categories. The categories are input, 

planning, editing, formatting, statistical, and analysis. It could be argued that artificial intelligence 

assisted writing tools could be a seventh category, but seeing as these tools actually write 

content for the user instead of helping the user write content for themselves, this topic will not 

be considered as an important feature for comparison purposes. 

Input tools have functionality that allow the user to actually write content. The most 

obvious example of this type of feature is Microsoft Word. Nearly every available writing tool has 

some kind of input functionality. At the basic level, this includes typing text and saving it to a file 

on a user’s file system. A more advanced features is saving the file to some kind of cloud-based 
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storage solution so that the user can access the file from multiple devices or even share the file 

with other users to enable collaboration. 

Planning features are those that help the user plan how their work might look when it is 

completed. Specific examples of this category include plot diagrams, character biographies, and 

personal wikis. Three  programs with these features are bibisco, Scrivener, and Milanote. 

Editing components take text as input and output possible corrections and suggest 

changes to the text. A good example of this type of feature is, again, Microsoft Word with it’s 

spellchecker and basic grammar correction abilities. One of the most widely advertised editing 

solutions is Grammarly, which provides the user with real-time suggestions on grammar 

corrections, improved word choice, and tone detection. 

Formatting tools allow the user to specify how the text is displayed. Bold and italic fonts, 

underlines, use of color, inclusion of images, writing in multiple columns, and others all 

transform a plain text experience into a rich text experience. Many input tools also function as 

formatting tools. Specialty formatting tools exist to export a work to given set of specifications. A 

few examples of why this would be done would be to submit a specific format needed for a 

publisher to physically print a book, output format for viewing on the internet, or produce a 

specific file format for e-book publication. Applications with this capability are Reedsy and 

Microsoft Word. 

Statistical functions display mathematical summaries of a work. The most well known of 

these in terms of literature are word page, page count, word frequencies, etc. This type of data 

is often easy for a computer to produce. Many of the available tools have some of this type of 

capability. 

Analysis operations require complex mathematical models and/or data structures to 

generate results. This is the primary area that artificial intelligence operates in. Since the 

release of ChatGPT, many companies are racing to add artificial intelligence capabilities to their 

products. This holds true for programs that have a target audience of writers. 
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Analysis tools assist someone in the revision of content they have already written. These 

tools aim to augment or replace some of the functionality of a human editor. These are the 

newest type of literary tool available. In recent years, many existing applications have been 

rushing to add this type of functionality to their products. It is quite possible that many of the 

programs mentioned here will contain some type of artificial intelligence backed analysis tools. 

Statistical functions and analysis operations are similar enough in concept that they can 

be hard to differentiate. Two examples of this are the Flesch Reading Ease and the Flesch 

Kincaid Reading Level. Both of these metrics count the number of words, the number of 

sentences, and the number of syllables to give a numerical representation of the difficulty of 

reading said work. If a person or computer has these counts, then the math behind the 

calculations is basic. If this information is not available, then counting the number of syllables in 

a word or the number of sentences in a work is a non-trivial task. Approximations can be made, 

but they often use complex sets of rules or some kind of machine learning algorithms to 

compute the required inputs.  
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Program Planning Editing Formatting Statistical Analysis 

Hemingway Editor - x - x - 

Scrivener x x x x - 

Writers Desk x x x x x 

Milanote x - - - - 

reedsy - x x ? - 

bibisco x x x x x 

Word - x x x - 

OneNote - x x - - 

Evernote - x x ? - 

Grammarly - x - ? x 

Writing Analytics ? x x x x 

Mellel - x x ? - 

Atticus - x x x - 

Quoll Writer x x - x - 

LivingWriter x x x x - 

Table 1 Tool Feature Comparison (input category not included) 

 

 Nearly all the personal tools available are focused on editing as their primary concern. 

Standalone Natural Language Tools 

ChatGPT, released on November 30, 2022, is usually the first tool that comes to mind 

when people think of natural language tools. This is relevant when discussing computer-

assisted literary analysis as people will associate and confuse the capabilities of ChatGPT with 
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the capabilities of a dedicated analysis tool. There are many branches of research contained 

within the natural language processing umbrella. 

Natural language processing is “a branch of AI that allows more natural human-to-

computer communication by linking human and machine language.” (What Is the Difference 

between NLP, NLU, and NLG?, n.d.) 

Machine translation deals with the task of translating input from one language into a 

different language. 

Natural language understanding “processes input data and can make sense of natural 

language sentences.” (What Is the Difference between NLP, NLU, and NLG?, n.d.) 

Natural language generation “builds sentences and creates text responses understood 

by humans.” (What Is the Difference between NLP, NLU, and NLG?, n.d.) 

ChatGPT has capabilities from a number of different NLP subfields. ChatGPT is also 

easy enough to use that guides appear on popular websites. 

However, there are many trust issues with such a large artificial intelligence, including 

what the AI and the company behind the AI does with all the information that people are 

constantly submitting to it. The newer tools are often designed to be easy to use, and thus can 

potentially collect a lot of information. For example, one guide describes an easy to replicate 

process to: 

1. Search for articles written by a specific author 

2. Summarize those articles 

3. Critique the author's writing style (Westley, 2023) 

Version Control 

In the software development world, there exists a type of software called reversion 

control. The purpose of version control is to allow a group of people, ranging in size from a 
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whole organization or the general public to just a single individual, to contribute to a project. 

Some of the primary features include rolling back existing files to previous version, identifying 

who made changes to specific parts of the project, providing secure file storage, allow (or 

restricting) access to the files, and allowing multiple people to work on the same file at the same 

time. 

Aspects of version control can easily be applied to literary works. The ability to go back 

and see what a previous version of a work can be very helpful. However, not many analytics are 

able to compare between revisions. 

In total, this program aims to tackle multiple problems, with the exact combination of 

problems being one of the unique aspects of the difficulty.  
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Methodology 

This section will describe the data used to produce results, open source projects that the 

application utilizes, the models behind the data analytics along with their corresponding sources 

of data, and techniques that were developed to enable the desired functionality set forth in the 

goals. Additional, decisions made about the design of the tool will be discussed. 

General Design Decisions 

Use of the .NET MAUI Framework for the User Interface and Model 

Even though a core part of the data analysis would be performed using the Python 

programming language, creating a modern application with a user interface that would appeal to 

users in the current day would be difficult using just Python. As such, the decision was made to 

use the .NET MAUI Framework to handle the user interface as well as the model. The .NET 

MAUI framework, while a newer solution, has a number of tools that greatly simplify user 

interface programming. The primary purpose of MAUI is to allow developers to create a single 

codebase from which they can create an application that runs on the Windows, Android, iOS, 

and Mac operating systems. If that framework was not sufficient in its capabilities, there was 

also the ability to fallback on the similar framework provided by WinUI 3. 

Additionally, programs made with .NET often execute much faster than those written 

purely in Python. As this application is designed to be heavily interacted with by users, the 

speed of the program was one of the top concerns. 

The making of this decision was aided by the availability of the .NET MAUI Community 

Toolkit’s implementation of the Model-View-Viewmodel (MVVM) architecture pattern. The 

MVVM pattern allows for a decoupling of the user interface from the rest of the application. The 
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pattern sped up development time as well as helped organize the code of the program. The 

pattern was also extended to the Model-View-Viewmodel-Services (MVVMS) as detailed by 

Microsoft employee James Montemagno. 

The other alternative to .NET MAUI would have been to use WinUI3. WinUI3 has been 

around for a longer period of time than .NET MAUI and has more resources available to support 

it. Being newer, .NET MAUI also has a lot of issues that are typically associated with newer 

software packages. One of the original “wish list” items for this project was to be able to access 

the data from multiple platforms, such as an Android phone. Early on in the build process, it was 

discovered that this would be too difficult to do in a short period of time while still implementing 

the amount of features needed. If the intention was to completely stop work on this project after 

the thesis is presented, hindsight says that the better decision most likely would have been to 

go with WinUI3 as the application only works on Windows. However, the application being built 

on .NET MAUI leaves open a lot of doors for future development and may reduce work in the 

long run. 

Model-View-Viewmodel-Services 

The major alteration to the MVVM pattern that MVVMS makes is the addition of Services 

portion. Services take on the role of a lot of functionality that was previously located in a 

Viewmodel or Model. An example of this might be a database service. Instead of having 

database access code placed throughout the program, all the database code can be centralized 

in one location that other parts of the program can call into. The migration of these functions 

results in the Model portion being reduced mostly to mimicking the structure of the program’s 

data. Similarly, a lot of the code that would have previously been included in the Viewmodel can 

now be placed into a Service. This can potentially increase the amount of code that is reused 

and reduce the overall complexity of the codebase. 
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SQLite3 as the Database 

One of the earliest design choices made about the structure of the application was to use a 

database for storage purposes instead of reading files every time the user wanted to access 

something. SQLite3 was chosen as the database due to how portable and lightweight it is. 

Data Used 

Sample data for this project was gathered from Project Gutenberg, a website that 

provides access to literary works for which their copyright in the United States has expired. Most 

of the content available from the website is in the public domain, and all the literary works used 

as input data are in the public domain. 

Works were chosen to illustrate the ability to operate on different types of literature. 

Specifically, the following works were used: 

• The Divine Comedy by Dante Alighieri 

o Reason: A narrative poem written a long time ago. 

• The Wonderful Wizard of Oz by L. Frank Baum 

o Reason: Prose written for children. 

• Alice's Adventures in Wonderland by Lewis Carroll 

o Reason: A revision of Alice's Adventures Under Ground. 

• Alice's Adventures Under Ground by Lewis Carroll 

o Reason: Precursor work to Alice's Adventures in Wonderland. 

• The Hunting of the Snark: An Agony in Eight Fits by Lewis Carroll 

o Reason: A nonsense poem. 

• Through the Looking-Glass by Lewis Carroll 

o Reason: Related to Alice's Adventures in Wonderland. 

• A Christmas Carol in Prose; Being a Ghost Story of Christmas by Charles Dickens 
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o Reason: A novella. 

• Grimms' Fairy Tales by Jacob Grimm and Wilhelm Grimm 

o Reason: A collection of short stories. 

• The Scarlet Letter by Nathaniel Hawthorne 

o Reason: A novel. 

• Winnie-the-Pooh by A. A. Milne 

• The Cask of Amontillado by Edgar Allan Poe 

o Reason: A short story. 

• The Fall of the House of Usher by Edgar Allan Poe 

• The Raven by Edgar Allan Poe 

o Reason: A poem. 

• The Tell-Tale Heart by Edgar Allan Poe 

• Hamlet, Prince of Denmark by William Shakespeare 

o Reason: A play. 

The content of each work was extracted from the available download links as there was 

no need to perform analysis on the Project Gutenberg License or “Also Written By The Author 

…” sections. 

Open Source Projects 

A number of open source projects were utilized to add functionality not available to the base 

installation of the .net MAUI Framework. Unless otherwise noted, all projects utilize the MIT 

license and were used unmodified. 

• .NET MAUI Community Toolkit 

o Purpose: Built in support for additional MAUI controls, behaviors, converters, 

and the Model View Viewmodel pattern. 
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• SQLite-net 

o Purpose: Enable support for using a SQLite3 database. 

• SQLite Portable Class Library 

o Purpose: Additional support features for SQLite3. 

o License : Apache-2.0 

• LiveCharts2 

o Purpose: Chart control for displaying data. 

• SpacyDotNet 

o Purpose: Access to the Python spaCy natural language processing library. 

This library uses Python.NET which enables interoperability between the C# 

and Python programming languages. 

o Modified to work with a different version of Python, with the .NET MAUI 

Framework, and with additional spaCy pipelines. 

• Json.NET 

o Purpose: Provides access to serialization and deserialization of C# objects to 

the JSON format. 

• Maui.DataGrid 

o Purpose: Provides a control that can display tabular data. 

• ColorPicker.Maui 

o Purpose: Provides a control that allows the user to select from a range of 

colors. 
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Natural Language Processing Libraries and Models 

spaCy and Spacy Syllables 

The spaCy library was chosen to handle the majority of the application’s natural 

language processing needs. As spaCy is written in Python and the thesis project is written in 

C#, the open source project SpacyDotNet was used so that C# objects could be created to 

access the corresponding objects in Python. 

spaCy is an established library (having been first released in 2015), has gone through 

multiple versions, and is considered to be a stable software package. Out of the box, spaCy is 

capable of handling many of the tasks that this project requires. These features include, but are 

not limited to, tokenization of input text, sentence segmentation, named entity recognition, part 

of speech tagging. This is all done invisibly to the end user via the use of convolutional neural 

networks. 

Additionally, the spaCy library has access to multiple, prebuilt language models on which 

the above functionality can run. This is vitally important as building a new model is far beyond 

the scope of this project. 

The functionality of the spaCy library can also be extended. This project required the 

detection of syllables in words which is not a built in feature. The Spacy Syllables pipeline was 

selected to provide this functionality. The SpacyDotNet package was extended by the author of 

this thesis to handle this pipeline, giving direct access to that data and functionality from within 

C# code. 

In this application, spaCy runs the en_core_web_lg pipeline. The form of the data source 

is written text (blogs, news, and comments.) This pipeline has data sources of OntoNotes 5, 

ClearNLP Constituent-to-Dependency Conversion, WordNet 3.0, and Explosion Vectors 

(OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl.) 
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In terms of evaluating the this pipeline, the following evaluation metrics are given on the 

spaCy website: 

metric Tokenizatio
n 

Part of Speech 
Tagging 

Sentence 
Segmentation 

Named 
Entitie
s 

Accuracy 1.00 0.97 - - 

Precision 1.00 - 0.92 0.85 

Recall 1.00 - 0.89 0.86 

F-score 1.00 - 0.91 0.85 
Table 2 spaCy en_core_web_lg pipeline evaluation metrics 

 

The features of sentence segmentation and named entities will especially important to 

this project. Thankfully, the scores are relatively high. No model is perfect, but this should 

provide sufficient accuracy. Another point to consider when looking at these scores is that 

spaCy is actively being developed. This means that there is a good chance that these scores go 

up even further in future as new advancements are made. 

Emotion Classification Models 

Creating a model that will determine what the emotional tone is in a given text is beyond 

the scope of this work. Existing models were evaluated for accuracy, ease of use, and execution 

speed. Eventually, two models were used in the program, with one being discarded. 

Both models use the GoEmotions dataset. This datasets consists of just over fifty-eight 

thousand comments from the website Reddit and was collected by Google. These comments 

were then annotated to say which of twenty-seven different emotional categories the comment 

embodies. An additional twenty-eight category of “neutral” was also included. The twenty-seven 

emotions annotated in the dataset are: admiration, amusement, anger, annoyance, approval, 

caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, 

excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, 

remorse, sadness, and surprise. 
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The two models examined were EmoRoBERTa and roberta-base-go_emotions. Both 

models can be used in the same way (down to identical function calls in Python, albeit with 

different parameters used.) Both models take the same type of input data, and the format of 

their output data is identical. This made it easy to compare the models. Another commonality is 

that both models seem to use neural networks to help them come to their decisions. 

Before the models could be used, the data needed to be changed into a format that they 

could process. The models have an upper token limit of five hundred and twelve tokens. This 

means that long passages of text cannot be processed all at once. Neither model can be used 

directly to get the overall feeling of a literary work if significant length. 

The solution to length problem was to break down the work into smaller chunks. Given 

the nature of the subject, two groupings were immediately apparent: sentences and paragraphs. 

Most paragraphs and almost every sentence would meet the length requirement. If an item is 

too large for the model to handle, the model has been instructed to truncate the input to the first 

512 tokens. 

A distinction needs to be made between words and tokens. The tokens of a sentence 

comprise more than just the simple words. They also may contain punctuation and excess 

whitespace. Tokens from the spaCy library also contain other information, such as a lemma. A 

lemma is basically the base form of a given word. For example, the words do, does, did, and 

doing all share the same lemma which is the word do. Due to this complexity of the English 

language, a sentence will often contain more tokens than it does words. 

Revision Tracking 

Revision tracking of documents isn’t a new idea. Scrivener and OneNote both allow a 

user to go back and view previous versions of documents. Version control in those programs 

are limited to files created in that program. This program takes an approach that aligns more 
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with the software development idea where it can track changes to files created by other 

programs.  

The main purpose behind revision tracking is that many users would not want to 

manually load in a new file to the application whenever they have completed a new revision. 

Also, many people do not create different files for ever revision they make. The inclusion of 

revision tracking will reduce the cognitive load required to use the program. 

Revision tracking was implemented as a separate windows service. The service 

operates invisibly to the user. The service connects to the same database as the main program. 

In the main program, any time a new revision is manually added by a user, the file path 

and file name are tracked. The user has the ability to toggle the tracking for and file on or off 

from within the main program on a separate database page. 

While the service is running, it watches for any content changes to activate files. If a 

change is detected, it saves a copy of the contents of the file in the database for later 

processing. This is called an unprocessed revision. 

The Works page and the database page of the main program both allow the user to see 

unprocessed revisions. On the works page, the user has the ability to process one revision at a 

time, or they can also process all revisions for a specific work. On the database page, the user 

is able to see a list of all revisions for all works and can process them one at a time in any order 

they wish. They can also remove an unprocessed revision 

Data Cleaning Tools for Users 

When data scientists perform analysis they often spend a lot of time cleaning the data 

before they can actually perform their analysis. As this program aims to be a tool for data 

analysis, any input data should technically be cleaned before it is used. However, the use case 

presented here prevents users from making changes to the input data. A writer wants to analyze 
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the data as written, not their next revision. An editors job is to revise the data, but they cannot 

change the original data that will be input into this program. 

 The solution to this problem is to allow the end user to perform some type of data 

cleaning after the data is input but before it is analyzed. As most of the people this program is 

targeted at probably won’t have data science, computer science, or mathematics degrees, this 

poses a large problem. A well-designed interface should be intuitive to use. User interfaces that 

are easy to use are usually simple. A simple interface may not provide enough functionality to 

the user. The objective here is to design a simple, easy to use interface, that is powerful enough 

to be effective. 

A single method of data cleaning was developed to illustrate the above concepts. The 

metrics targeted are among the most important in this project, those being named entity 

presence scores and named entity tonality. 

This feature is needed because the named entity recognition capability of the spaCy 

library, like most machine learning implementations, is not perfect. It can fail to detect named 

entities and (false negatives) it can improperly classify things as entities when they shouldn’t be 

(false positives.) The named entity data is gathered every time the user attempts to show a 

visualization with entity presence or entity tonality. Any entities are added to a named entity 

correction table in the database if they are not already present. 

The user needs to be able to correct these mistakes in order for any metric that depends 

on named entity detection to work properly. A user is able to summon a popup on any work to 

display the named entity correction popup as seen in Figure 4. This interface gives four key 

abilities to the user. 

First, the user is able to ignore any entity that has been falsely identified as a named 

entity. They do this by simply toggling the ignore button next to an entity on or off. 

The user can also just remove any named entity from the list completely. While this list is 

regenerated every time, this can be useful in situations where an entity was included in an early 
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draft of a work that the user does not want to run any metrics on again. Removing the item will 

not prevent any functionality of the program from working in the future, but it does allow the user 

to reduce the amount of entities displayed to them. 

Similarly, the user can just create a new entity. A new entry in the database is created 

with a default name “?” that the user must change. It functions identically to any correction 

created by the program. 

Lastly, the user able to select an entity, click the drop in the Alias For column, and select 

another entity correction. Any presence score attributed to the entity in that row will then be 

given to the item pointed to in the Alias For column. For example, entities named “Bob” and 

“Bobby” may both alias into an entity named “Robert.” Any item that aliases into another item 

this way itself becomes intelligible to be the target of an alias for. Any item that is ignored also 

becomes ineligible. Figure 5 shows the popup that is displayed when a user changes the “alias 

for” selection. 
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Figure 4 Named Entity Corrections Interface 

This shows the Named Entity Corrections Interface being used on The Christmas Carol by Charles Dickens. 
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Figure 5 Named Entity Correction Interface - Alias Selection 

The user is selecting an alias for the entity Luchesi. The only entities that are not ignored are “Montressor”, “Fortunato”, 
and “I.” However, “I” is an alias for “Montressor” and thus is not eligible to be aliased into. The no selected alias option 
of “-“ is always available. 

 

Interactive Visualizations 

One of the core features of this project is to allow an end user to explore data in a 

meaningful way. This was addressed in two specific ways. 
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Chart Control 

The most important part in displaying the results of the analysis to the end user will be 

through the use of a chart. As such, the chart control used should be robust in features and 

easy to use for the user. 

Just because a chart control has good features doesn’t mean the final charts displayed 

will be good quality. Designing good-looking charts is the responsibility of the programmer 

combining the data and the chart control. With this in mind, a chart control with a lot of features 

will greatly aid a programmer. Desired features of a good chart control include being able to 

display multiple types of charts (line charts, bar charts, scatter plots etc.), being able to display 

multiple data series, easy editing of the x-axis, y-axis, legend, and title, the ability to customize 

the chart with color, the ability for the end user to interactively pan and zoom the chart to 

explore the data with greater precision, being able to view the exact values for items on a chart 

through a tooltip at the mouse’s position, having the feature to save a chart to a file for viewing 

at some point in the future, and the ability to update a chart with new data. 

The LiveCharts2 project meets all of these requirements, and is also an open source 

project, and thus was selected to be the chart control for this project. 

User Filters 

In addition to the chart described above, the end user is able to add or remove filters to 

the displayed chart. This allows the user to display the chart that is most useful to them. 

This functionality is often part of what is called a data dashboard. The included user 

filters include: the ability to set the first and last item that will be displayed, changing the 

maximum number of items displayed, enabling or disabling any functions that might alter the 

data (e.g. a smoothing function), hiding or showing the legend, changing the foreground and 
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background colors, and adjusting the fill color (i.e. whether the area under a line chart is a solid 

color, blank, or somewhere in between.) 

The LiveCharts control can be databound to an object to be used as a data series. 

Whenever the user updates a filter, an update function will be called and the databound values 

will be updated. 

To make the program responsive to the user’s requests, any data produced by an 

analytic was stored but will not displayed to the user. Instead, updates to the filters generate a 

new series that is displayed. 

As a new array of series gets created every time the user adjusts a filter, the user’s 

current zoom and pan settings must be reapplied when the new series is databound. This is as 

simple as saving the current values before the data is changed and reapplying them after the 

data is changed. 

When the user selects a new color to be used for either the foreground color (the lines 

on a line chart, the bars on a bar chart) or the background color, multiple things can happen 

depending on the visualization type. 

For visualization that will only ever display a single data series (e.g. the word count 

change for all revisions belonging to a work), the exact color the user picked will be used. 

For visualizations where only a few data series will be shown (e.g. part of speech 

comparison between the latest revisions of two different works), the user selected color is 

shown for the work that originates the visualization. For the data gathered from the second 

work, another shade of the same color is chosen. If the chosen color is closer to white than 

black, then a darker shade is shown, otherwise a lighter shade is shown. 

For visualizations where multiple data series can be shown (entity presence, emotion 

probabilities, entity tonality) a predefined color palette is used. (e.g. the first color shown is blue, 

the second color shown is orange, etc.) 
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Any visualization that has more than one data series or a single data series that needs a 

description contains a legend. The ability to toggle the legend on and off involves changing the 

value of a single variable and was simple to implement. 

The first item, last item, and max number of displayed items simply take the adjusted 

data and select the appropriate range to transferred to the displayed values. 

Since the range on the data can change drastically from item to item, the user has the 

option of adding a smoothing function to the data before it is displayed. The user currently has 

two choices of smoothing function, though not ever visualization or data series has access to 

both functions. 

The centered rolling average smoothing function adjusts the value for a given item by 

looking at a parameterized number of adjacent items, averaging all their values, and sets the 

value to the average. The user is able to adjust the parameter to any integer in the range one to 

fifty (inclusive of the endpoints) and the default value is 5. 

If the examined values are at the beginning or end of the item group, dummy values are 

created so the number of displayed items stay the same. This was done by creating an 

interpolation using the first or last item and zero. The resulting dummy values are in the range of 

(0, first item) or (last item, 0). For example, if the number of items is set to 4, and the first value 

is 1, the numbers 0.2, 0.4, 0.6, and 0.8 would be added to the beginning of the list. 

The following visualizations help show this algorithm in action. The data for this example 

consists of a number of paragraphs comprising a single sentence each. The sentences are 

either “this is a sentence” or “This is a sentence with Bob in it.” Figure 6 shows the base values. 

Bob is present in items 3, 13, 19, 22, and 23. Each time Bob is present, a score of 1 is given. 

Figure 7 shows what the centered rolling average looks like with a parameter value of 2. Figure 

8 shows what the centered rolling average looks like with a parameter value of 5. 
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Figure 6 Entity Presence, No Smoothing 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. 

 

Figure 7 Entity Presence, Smoothing (Centered Rolling Average: 2 items) 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. 
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Figure 8 Entity Presence, Smoothing (Centered Rolling Average: 5 items) 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. A large value for the Centered Rolling 
Average algorithm shows the character Bob to be present throughout the entire story. 

The lookaround smoothing function adjusts surrounding values based on the center item 

and previous known values. Starting at the first item and moving toward the last item, two steps 

are taken. There are two parameters for this function: the number of lookback steps and the 

number of lookahead steps. The user is able to adjust the parameter to any integer in the range 

one to twenty (inclusive of the endpoints.) The default value for the lookback parameter is two 

for paragraphs and five for sentences. The default value for the lookahead parameter is five for 

paragraphs and twenty for sentences. The lookaround smoothing function can only be applied 

to entity presence scores. 

The first step is the lookback step. From the current value, the algorithm attempts to 

move backward a number of steps equal to the lookback parameter. The item the algorithm 

stops on will be the lookback item. If an entity is found at a position, the lookback stops one item 

short of the entity. If the start of the items is found, the lookback stops at the first item. Then any 

items between the current item and lookback item are overwritten. The new values will be 

evenly distributed to create a constant increase from the value of the lookback item to the value 



35 

of the current item. For example, if the lookback item has a value of 0.7, and the current item 

has a value of 1, with two intermediate values, the final set of values from the lookback item to 

the current item will be 0.7, 0.8, 0.9, and 1. 

The second step is the lookahead step. From the current value, the algorithm attempts 

to move forward a number of steps equal to the lookahead parameter. The item the algorithm 

stops on will be the lookahead item. If an entity is found at a position, the lookahead stops one 

item short of the entity. If the end of the items is found, the lookahead stops at the last item. 

Then any items between the current item and lookahead item (inclusive of the lookahead item) 

are overwritten. The new values will be evenly distributed to create a constant decrease from 

the value of the current item to the value of 0. For example, if the current item has a value of 1, 

and there are 5 lookahead steps, the final set of values from the current item to the lookahead 

item will be 1, 0.8, 0.6, 0.4, 0.2, and 0. 

Additionally, if an entity was found, the algorithm proceeds as normal up to the point 

where the entity was found. The value of entity is then increased by what would have been the 

new value. For example, if the current item has a value of 1, and there are 5 lookahead steps, 

but an entity with a value of 1 was discovered on the third lookahead step, the final set of values 

from the current item to the lookahead item will be 1, 0.8, 0.6, 1+0.4=1.4, ignored (would have 

been 0.2), and ignored (would have been 0). 

The following visualizations help show this algorithm in action. The data for this 

visualization is the same as for the previous example illustrating the centered rolling average 

smoothing function. Figure 6 (shown previously) illustrated the base values. 

Figure 9 shows the default values for the lookaround function. The entity at position 3 

has a value of 1. The lookback parameter of 2 sets the values of items in range (1, 3) to be in 

between the values of the items at positions 1 and 3. The lookahead parameter of 5 overwrites 

any values in the range (3, 8] and decreases them to 0. 
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The same process happens for the entity detected at position 13. Nothing different 

happens here. 

The process happens again for the entity found at position 19. This time, the lookback 

portion of the algorithm finds a value of 0.2 at position 17. The item in position 18 is then set to 

0.6, halfway between the values of 0.2 for position 17 and 1 for position 19. 

When the lookahead portion of the algorithm happens, it finds an entity at position 22. 

The lookahead step would have set this to a value of 0.4, but it instead increases the current 

value of 1 by 0.4 for a total presence score of 1.4. 

The last point to illustrate is when the algorithm starts from position 23. The lookback 

portion finds an entity in the previous position. Since the range of (22, 23) produces no 

numbers, the lookback step has no effect. The lookahead step hits the end of the item range, 

and simply stops at that point. 

Figure 10 and Figure 11 illustrate the same process on the same data, but with different 

values for the lookback and lookahead parameters. 

 

Figure 9 Entity Presence, Smoothing (Lookaround: 2 Back, 5 Forward) 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. 

 



37 

 

Figure 10 Entity Presence, Smoothing (Lookaround: 2 Back, 3 Forward) 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. 

 

Figure 11 Entity Presence, Smoothing (Lookaround: 5 Back, 3 Forward) 

In this demo of entity presence, Bob is present in items 3, 13, 19, 22, and 23. 

 

This method allows multiple mentions of an entity to boost the score over a value of 1.  
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Data Analytics for Users 

This section describes the algorithms used to compute the values shown to the user. 

Basic metrics, while simple to understand and implement, have been included for 

completeness. The simpler metrics are included toward the end of this section. 

Entity Presence Scores 

The entity presence value is a measure of how confident the program is that a given 

named entity is present in a story. This means the character is in the current scene. They could 

be talking to another entity, thinking to themselves, performing actions, etcetera. The entity does 

not actually have to be present with others for the algorithm to detect them though. If two 

entities are talking about a third, then that third entity is considered to be present. No distinct is 

made between the two types distinct types of presence. 

To calculate the entity presence scores for a given work, first the work is split into item 

groups where the items are either paragraphs or sentences. Then, a list of entities is created. 

Named entity recognition is run on the document to produce the initial list of entities. This list is 

then modified by any named entity corrections the user has put in place. Ignored entities are 

removed from the list. The item groups are then searched to see if they contain the names of 

any entities. If an entity is present in an item, it is given a score of 1, otherwise it is given a score 

of 0. Entities that are an alias for another entity simply combine their score with the item they’re 

aliasing into. Finally, before the scores are displayed to the user, any smoothing functions the 

user has selected are applied to the data. 

Additionally, groups of entities can be created. This is done by simply averaging the 

presence score of each member in the groups. One parameter for grouping include the size of 

the group (which has been limited to 6 for efficiency and readability.) Another parameter 

specifies if the final group must contain all of the selected members or if any group that contains 
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at least the specified number of selected entities is valid. In either case, to prevent potentially 

dozens or hundreds of groupings from being created, non-selected entities are excluded from 

the created groups. 

Entity Presence Scores are displayed as a line chart to the user. The user has the option 

to toggle the display of any entity in the final data series on or off. 

Emotion Classification Probability Scores 

The emotion probability score is a measure of how confident a given block of text 

conveys the emotion described by its label. A block of text is fed as an input to the model and a 

dictionary of twenty-eight emotions (actually twenty-seven emotions and a neutral label) and 

their corresponding values is returned. 

Note that the probability scores do not need to add up to a value of one. It is possible 

that the input text can contain more than one emotion. Figure 12 shows a small selection of the 

available emotions in a small range for The Cask of Amontillado by Edgar Allan Poe. 

 

Figure 12 Emotion Probability – Multiple Emotions For A Single Item 
Showing just three of the emotions and the neutral classification of a particular point in The Cask of Amontillado by 

Edgar Allan Poe 
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This shows that there are multiple emotions present for item group seventeen. A further 

examination using the interactivity of the chart by showing the tooltip for that item groups (as 

shown in Figure 13) reveals that the sum of these three items exceed the value of 1. 

 

 

Figure 13 Emotion Probabilities – Tooltip 
Emotion probabilities for a Specific Moment in The Cask of Amontillado by Edgar Allan Poe 

 

Emotion Classification Probability Scores are displayed as a line chart to the user. The 

user has the option to toggle the display of any emotion in the final data series on or off. 

Named Entity Tonality 

Named entity tonality is the combination of named entity presence scores with emotion 

classification probabilities. The calculation for a named entity tonality score is fairly basic. The 

algorithm take in as input two lists of data of equal length, an entity presence score and an 

emotional probability score. A minimum function is applied to every element the entity presence 

score so that each element in the score is in the range [0, 1]. This can be interpreted as the 

algorithm being fully confident that an entity is present at a score of 1 or higher, and only 

partially confident if has a value less than 1. This directly impacts the next step where each 

element of the presence values is multiplied by the corresponding element in the emotion 

probability score. As both sets of numbers have a minimum of 0 and a maximum of 1, this yields 

another number in the range [0, 1]. 

Named Entity Tonality is displayed as a line chart to the user. 
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Flesch Reading Ease 

The Flesch Reading Ease score, developed by Rudolf Flesch, is a measure of how 

difficult a given work is to understand. The work must be written in English as the values in the 

formula are specific to the English language. The formula for the Flesch Reading Ease score is: 

𝐹𝑙𝑒𝑠𝑐ℎ 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝐸𝑎𝑠𝑒 = 206.835 − 1.015 (
total words

 total sentences 
) − 84.6 (

  total syllables  

total words
) 

Typical scores for the Flesch Reading Ease range from 0 to 100 but can go as high as 

121.22 (calculated from a work with a single word, sentence, and syllable.) Scores much lower 

than 0 are possible with highly complex sentences. Thus, a higher score indicates the text is 

easier to read than another text with a lower score. 

The spaCy Syllables pipeline for spaCy library is capable of adding syllable counts to the 

tokens generated by spaCy. Retrieving this information becomes a simple task, and the 

computation of the Flesch Reading Ease score becomes simple.  

The Flesch Reading Ease is displayed as an inline statistic when selecting a revision 

and needs no visualization. 

Flesch-Kincaid Grade Level 

The Flesch-Kincaid Grade Level score, developed by Rudolf Flesch and J. Peter 

Kincaid, is another measure of how difficult a given work is to read. This metric uses the same 

input parameters as the Flesch Reading Ease test, but calculates the score using a different 

formula. The formula for the Flesch-Kincaid Grade Level is: 

𝐹𝑙𝑒𝑠𝑐ℎ − 𝐾𝑖𝑛𝑐𝑎𝑖𝑑 𝐺𝑟𝑎𝑑𝑒 𝐿𝑒𝑣𝑒𝑙 = 0.39 (
total words

 total sentences 
) + 11.8 (

  total syllables  

total words
) − 15.59 

The lowest score possible is 3.4 (calculated from a work with a single word, sentence, 

and syllable.) Scores represent the average grade level needed in the United States to readily 
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understand the text; lower scores indicate the text is easier to read than another text with a 

higher score. 

As this metric depends on the same input as the Flesch Reading Ease, this metric can 

be calculated as soon as the Flesch Reading Ease metric can be calculated. 

The Flesch-Kincaid Grade Level is displayed as an inline statistic when selecting a 

revision and needs no visualization. 

Paragraph Count 

Computing the paragraph count requires the user to specify how paragraphs are 

delimited. The two options available are detecting a newline character at the end of a sentence 

and detecting a completely blank line (where multiple blank lines in a row are considered to be a 

single blank line.) This step must be performed as different works have different ways of storing 

their data. 

If the first option is used and the document also uses extra blank lines between 

paragraphs, the extra blank lines will be condensed into a single newline character. 

 

Figure 14 Sentence Detection – Completely Blank Line 
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The beginning of Alice in Wonderland by Lewis Carroll. The text is formatted to have a maximum number of characters 
on each line and a newline character is used to move text from line to line. A completely blank line is used to delimit 
the paragraph. 

 

Figure 15 Sentence Detection – Newline Character At End Of Line 

The beginning of Alice in Wonderland by Lewis Carroll. Word wrap is turned on in Windows Notepad so the user can 
see all the text without having to scroll horizontally. The text is formatted to use a newline character to delimit the end 
of a paragraph. 

Paragraph counts are displayed as an inline statistic when selecting a revision and need 

no visualization.  

Part of Speech Usage 

Detecting what part of speech any given word in a sentence is another topic that is 

beyond the scope of this project. Luckily, the spaCy library has this ability as one of its core 

features. The tokens produced by spaCy can be queried for their part of speech, and a count of 

each is created and then displayed as a bar chart to the user. 

Sentence Detection and Count 

Without the use of a library, sentence detection would involve a bit work. An example of 

why the task is more difficult than it may first seem involves considering how sentences are 

ended. The most common sentence ending is a period. The logical next step is to attempt to 
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split a work into sentences by using end punctuation like periods, exclamation marks, and 

question marks. However, doing this would also split the text apart whenever an abbreviated 

title like “Mrs.” or “Dr.” is used. Modern texts that mention websites would also fail to parse 

properly as the period in “amazon.com” would cause the same issue. 

One also has to consider the possibility that a sentence of dialogue is interrupted by 

another person. This is usually indicated by the use of the em dash. Does the interrupted line 

count as one line or two? 

Luckily, these issues can be ignored as the spaCy library is able to parse sentences. 

Getting the sentence count in a work is as simple as processing the document and looking at 

the value of a single property on the processed document. As this property is a list, getting the 

number of sentences is also simple. 

Sentence counts are displayed as an inline statistic when selecting a revision and need 

no visualization. Sentence lengths are displayed as a bar chart to the user. 

Word Count 

Getting the word count for a revision is simple. A string containing the entire document 

was split on an empty character / whitespace. This results in an array of strings where each item 

in the array is a word. Empty strings were pruned from this list. A simple count on the final array 

length results in the word count. Word counts are displayed as an inline statistic when selecting 

a revision and need no visualization. 

Word Count Change 

Getting the number of words written in one revision compared to another is also simple. 

The word count stored in the older revision is subtracted from the word count of the more recent 

revision. Word count changes are displayed as a line graph to the user. 
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Note that negative word change counts are possible when the editing process makes the 

new revision shorter in length.  

Word Frequency 

Computation of Word Frequencies is another simple task. A list of words is generated 

from a revision in a similar way that the Word Count metric uses. Additional steps are taken to 

remove all punctuation and convert the entire document to lowercase. (This ensures the word 

“However” is considered to be the same as the word “however.”) A dictionary is created where 

the key will be a word and the value will be the number of times that word appears in the 

document. The program than enumerates through the list of words. If the word being looked at 

is not in the dictionary, it gets added to the dictionary with a value of 1. If the word is already in 

the dictionary, its value is increased by 1. The final word frequency is then displayed as a bar 

chart to the user. 

Data Summary 

Some visualizations have the option to display some summary statistics about the data 

used to construct the chart. 

 

Figure 16 Data Summary Popup 

A summary of the emotion probabilities for curiosity, desire, fear, and sadness in The Raven by Edgar Allan Poe. 
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Data Export for Data Scientists 

The ideal use case scenario for this program is that it would be the only analytic software 

a person would need to use. This is a lofty goal, and probably not achievable even with a large, 

dedicated, and knowledgeable team aiding in the development of the program. This is 

especially true given the limited nature of the program as of the time this document was written. 

To account for the scenarios that this program is not capable of handling, but a user 

would like to explore the data even further, a data export option was added. Now, whenever the 

user would like to use the underlying data in any metric they use, all they have to do is click a 

single button to have raw data copied to their computer’s clipboard. 

The copied data adheres to a specification. The first line of the data will be the header 

data for the primary series of data copied. Each line after that will contain the data for a single 

item in the primary series. An example of a data series and the items it contains is the entity 

presence scores for all the named entities within a work, with each entity being a single item. 

Some of the analytics use more than one data series. Combining the aforementioned 

entities with emotion classification is the primary reason the option for a secondary data series 

was created. If copied data has a secondary data series, a blank line will be inserted after the 

primary data series, followed by an output for the secondary data series that mirrors the format 

of the primary data series. 

Every entry on each line is separated by a tab character. This enables pasting the data 

directly into a spreadsheet program. Figure 17 shows what the data looks like when pasted 

directly into Microsoft Excel. This functionality was utilized to produce some of the graphs 

contained in this document. 
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Figure 17 Data Export Into Excel 

The above data was put on the clipboard by clicking the Copy All Data button for an Emotional Probability visualization 
of The Raven by Edgar Allan Poe. Excel was then opened, and the data pasted directly into Excel without any 
manipulations of the data.(The screenshot was truncated for display purposes. It contains 28 data rows and 19 data 
columns in addition to the header column and header row.) 

Another export feature was added in the ability to save the currently displayed 

visualization to a file. The majority of the figures in this document were created this way. 
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Analysis and Discussion 

This section will assess the effectiveness of the methods described above. Limitations of 

the implementation will also be acknowledged. 

Interactive Visualizations 

The purpose for the inclusion of interactive visualizations is to allow the user to explore 

data in a more meaningful way than simply looking at a summary statistic, an exported table of 

raw data, or even a static chart. 

 The legend portion of the LiveCharts control has a bug where the background color of 

the legend cannot be changed. This leads to the situation where the legend is not all that 

visually distinct from the rest of the chart. Nothing needs to be done about this though, as this 

bug is undergoing testing related to a fix in the next version of the control. 

 Additional features that would make the visualizations even more useful would being 

able to select the colors used in visualizations where a color palette is required. Comparing data 

can sometimes be difficult when the color of a displayed series changes whenever the user 

adds or removes selected items. 

 An alternative to customizing the color predefined color palette would to allow the user to 

manually specify the color for a displayed series by clicking on the label associated with the 

series in the legend and then selecting a new color to use. 

 Both of the color selection improvements could be implemented, giving even finer control 

to the user. 

 As it stands now, the user is not able to see the underlying text for an item group. 

Providing a way for the user to see that data would greatly help give context to the visualization. 

This could be done by creating a tooltip for the x-axis label that contains the item’s text. 
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The interactive chart control the user has access to, combined with a number of data 

filters, provides the user with a lot of freedom in exploring the data this program creates. 

It could also be useful to have a simple way to view the base entity presence score or 

emotion probability score when the user utilizes some of the selection and combination features 

the charts provide. 

Basic Statistical Metrics 

The Word Count, Word Count Change, and Word Frequency metrics are simple enough 

to compute (i.e. they’re just simple counts) that no analysis is needed. Furthermore, since the 

Sentence Detection, Sentence Count, Part of Speech Usage, Flesch Reading Ease, and 

Flesch-Kincaid Grade Level metrics are computed easily via using libraries to get the required 

variables, no additional analysis is needed on these metrics beyond what the authors of the 

relevant libraries have already done. 

There are a few changes that could improve the usability of some of these statistics. The 

Flesch Reading Ease and Flesch-Kincaid Grade Level metrics in particular could use an 

explanation and show a scale of common numbers. This was attempted via a tooltip when the 

user hovers their mouse over a number, but the built in tooltips don’t allow for displaying of 

newline characters. 

The inclusion of these basic statistics increases the usefulness of the program and can 

add content to other, more advanced metrics. 

Paragraph Count 

The paragraph splitting and counting features proved to be accurate by comparing the 

generated data by actually counting the number of paragraphs for a number of the shorter 

works used as sample data. 
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The implementation is currently limited to two different types of delimiters for splitting 

paragraphs. It is entirely possible the other ways of denoting a new paragraph in a literary work 

that this algorithm does not account for. 

User Cleaning of Named Entity Recognition Errors 

Allowing the user to create new entity corrections allows the user to correct for the 

situation where the perspective character is almost never named. In the case of the Divine 

Comedy by Dante Alighieri, the narrator is the main character, also named Dante, but is only 

named once is the entire translation. 

This approach is not without errors of its own. It is possible that other characters may 

use the word “we”, thereby reducing the accuracy of the results. Another possible flaw in this 

approach is that if the perspective shifts characters but stays in the first person point of view, a 

similar situation will occur where the word “we” refers to multiple entities. 

A possible solution to this issue is to further refine the entity correction process so that 

the user can specify item ranges where the entity correction applies. 

 

Figure 18 Entity Presence Utilizing Entity Corrections (New Entity) 
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Manual addition of the label "we" vs mentions of the main character "Dante" to visualize the presence of the main 
character in The Divine Comedy by Dante Alighieri 

The ability to have one entity be an alias for another entity was also successful. Figure 

19 shows the entity presence of the three main characters. Montressor is only mentioned once, 

even though they are the narrator and provide the perspective the story is told from. Figure 20 

then shows a successful aliasing of the word “I” to the character of Montressor. 

 

Figure 19 Entity Presence Utilizing Entity Corrections (No Aliasing) 

Entity presence for the main characters in The Cask of Amontillado by Edgar Allan Poe. Montressor is only mentioned 
once by name. 
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Figure 20 Entity Presence Utilizing Entity Corrections (Successful Alias) 

Entity presence showing a successful use of an alias “I” for the character of Montressor in The Cask of Amontillado by 
Edgar Allan Poe. 

Figure 21 also shows a problem with named entity corrections. Multiple characters can 

be combined into a single entity when they shouldn’t be combined. The entities displayed are 

Queen, Rumpelstiltskin, and Snowdrop. However, the Queen in this case is two different 

characters from two different short stories contained in the larger work. 

The solution to this problem is to extend the named entity correction so that the 

correction only applies to a range of items in the text. As the base named entity corrections 

operate on the Work level, not the Revision level, another table will have to be added to the 

database to extend this feature. 
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Figure 21 Entity Presence Utilizing Entity Corrections (Incorrect Entity Combination) 

Entity presence showing a an unsuccessful combination of two different Queen characters in Grimm’s Fairy Tales by 
Jacob and Wilhelm Grimm. 

The named entity correction feature of spaCy is not perfect. It can often miss entities 

entirely. When examining Winnie the Pooh by Alan Alexander Milne, the character of Piglet was 

detected, but only as “Little Piglet” and not simply “Piglet." Figure 22 shows the 

EntityCorrections table for the database utilized by the program. The corrections have been 

filtered by work and by name. The entities detected by spaCy with the word “pig” include the 

non-entity phrase “Fond of Pigs”, the nickname “Little Piglet”, and the name of another character 

“Henry Pootel Piglet.” 

The named entity recognition feature of spaCy does have multiple labels. For simplicity, 

this program only looks at named entities with the “PERSON” label. It is possible that one of the 

other labels, such as “ORG” or “LOC” may have picked the correct entity. However, it is also 

possible that none of the other labels correctly identified the character. As this is an issue with 

the library being used, the best solution is to allow the user to manually add a named entity 

correction to identify missed entities. 
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Figure 22 Named Entity Corrections - Database Query of "pig" 

The database filtered by WorkID (10 == Winnie The Pooh by Alan Alexander Milne) and Name (the phrase “pig”.) The 
character of Piglet was not directly detected by the spaCy named entity recognition feature. 

Another issue with named entity recognition is the amount of entities that are created 

that are not actually named entities. Figure 23 shows many non-entities being detected as 

entities. Databinding in XAML can be slow, and large amounts of entities can slow the program 

down. 

 

Figure 23 Named Entity Correction - non-entity detection 

The named entity correction interface of the program, shown for Hamlet by William Shakespeare. 
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There is a bug with one of the MAUI function calls that displays a popup window. This 

bug only occurs intermittently. As this is the function that displays a list of aliases, this can break 

the ability to assign aliases for corrections. An alternative could be programmed in, but many of 

the alternatives that were attempted dramatically lagged the program. This bug will hopefully be 

fixed by Microsoft in the future. If this bug happens now, the user will be forced to restart the 

program, possibly multiple times. 

Overall, this is an effective addition to the capabilities of this program. This functionality 

provides the necessary data so that characters can be identified. 

Entity Presence Scores 

Entity presence scores perform well but are not without issues. Assuming the user has 

made the necessary adjustments using the named entity correction tool, the entity presence 

algorithm reliably matches the positions and scores them accordingly. 

The Raven by Edgar Allan Poe will be analyzed to illustrate these points as The Raven 

is a short work and the results are easily verifiable by comparing the graphs below with a 

cursory reading of the poem. 

The first issue is that the entity presence algorithm looks for any instances of a word that 

matches a named entity. In the case where the name of entity is in the title of a work but the 

entity is not immediately present, this results in a false positive detection of the entity. Figure 24 

shows this problem. 
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Figure 24 Entity Presence - Title of Poem Alters Results 

Subject: The Raven by Edgar Allen Poe. The presence of the word Raven in the title of the poem (Paragraph 0) alters 
the graph so that it appears the entity of the Raven is present before its first actual appearance in the 6 th stanza. 

 

That issue aside, the rest of the visualization aligns with what is written in the poem. The 

narrator is detected immediately in the first stanza. As the poem is written in first person 

perspective, the narrator continues to refer to himself as “I” and his presence score continually 

climbs and approaches a stable score. As the narrator spaces out references to themselves 

fairly evenly, this stable score makes sense. 

The narrator spends the first few stanzas reminiscing about the character Lenore. As 

Lenore is mentioned in stanzas two and five, her presence score spikes at those times, along 

with the algorithm’s predictions as to whether or not she is present in the periods immediately 

surrounding those mentions. 

Stanza six sees the arrival of the titular raven. The narrator’s focus switches from 

thinking about Lenore to interacting with the raven. As expected, the presence score for the 

raven increases with the presence score for Lenore decreases. 
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The narrator once again mentions Lenore in stanza fourteen, which is responsible for 

making her presence score rise above zero. At the same time, the raven itself is mentioned 

repeatedly alongside dialogue tags in the poem’s most famous line, “Quoth the Raven, 

‘Nevermore.’” 

The final large change in the presence scores is a drop-off in the narrator’s presence in 

the last stanza. As the narrator does not refer to himself as “I” in that stanza, this drop-off is 

expected. 

Groupings of entities are simply the average of the presence scores for every entity in 

the group. Figure 25 clearly shows the two entities and their average as a group. 

 

Figure 25 Entity Presence - Entity Grouping 

Combining entity presence scores for multiple named entities to create a unique grouping. Subject: The Wizard of Oz 
by Lyman Frank Baum. 

 

Another issue with entity presence scores is that the base data is not very readable 

without the use of a smoothing function. Figure 26 shows some of the entity presence scores for 

A Christmas Carol by Charles Dickens. Without a smoothing functions, all entities are scored as 

a 0 or 1. 
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This also illustrates two problems already discussed. One problem is a group of entities 

related by aliasing are being summed instead of averaged. (Scrooge is an alias of Ebenezer 

Scrooge. Ebenezer Scrooge thus gets counted twice.) The other problem is one entity picking 

up the presence scores of multiple characters. (Ghost, and it’s alias Spirit, represent The Ghost 

of Christmas Past, The Ghost of Christmas Present, and the Ghost of Christmas Yet To Come.) 

 

Figure 26 Entity Presence - No Smoothing Function 

Subject: A Christmas Carol by Charles Dickens. 

Even zooming in for more detail, as shown in Figure 27, doesn’t provide much insight. 



59 

 

Figure 27 Entity Presence - No Smoothing Function (Zoomed) 

Subject: A Christmas Carol by Charles Dickens. View from Figure 26 has been zoomed in for more detail. 

The solution to this problem was the application of a smoothing function. Not only does a 

smoothing function approximate an entity fading from narrative after they stop being mentioned, 

it also makes it easier for the user to interpret. 

 

Figure 28 Entity Presence - Lookaround Smoothing Function 

Subject: A Christmas Carol by Charles Dickens. 
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Once the centered rolling average smoothing function had been developed for emotion 

classification probability scores, the option was given to the user to use that smoothing function 

instead of the lookaround smoothing function. The rolling average is a decently well known 

algorithm, and is easy to interpret just from viewing the results. How the lookaround function 

smoothing function is more complicated. The rolling average also makes the differences from 

item to item more apparent as the curve generated by the data points is less smooth. 

 

Figure 29 Entity Presence - Centered Rolling Average Smoothing Function 

Subject: A Christmas Carol by Charles Dickens. 

Improvements to the algorithm can be made. One easy to implement option would 

exposing the value of a positive entity detection to the user. Perhaps the user might get better 

results if they were able to set the score to +0.5 for a match instead of +1. If this were done, the 

entity tonality function might also have to take this factor into account. 

Another feature that would be helpful would be live corrections of the data. If a user were 

able to select item position 0 as displayed in Figure 24 and change the entity presence score of 

“Raven” from 1 to 0, it would provide a much more accurate result. 

Additionally, if there was a way to view each item, it would help provide extra context to 

the displayed scores without having to manually check the source document. 
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This feature meets the requirements of the program. Entities can now be detected and 

their presence in a story plotted in meaningful ways. 

Emotion Classification Models 

Before the selected emotion classification models can be used, they have to be 

evaluated for accuracy, ease of use, and execution speed. EmoRoBERTa was the first model 

chosen. The roberta-base-go_emotions model was found as an alternative to EmoRoBERTa. 

Ultimately, the decision was made to utilize the roberta-base-go_emotions model over 

EmoRoBERTa. 

 The creator of the roberta-base-go_emotions model, Sam Lowe, also did some 

statistical analysis of the model. Not only were those results made available, but the Jupyter 

notebook that performed the analysis was also made available. EmoRoBERTa was provided 

without the same analysis. However, since both models are created in the same way, used in 

the same way, and output data in the same format, it was possible to alter the parameter in the 

provided Jupyter notebook to perform the exact same analysis on EmoRoBERTa. 

 

Table 3 shows the overall results of both models when taking the mean values of all 28 

possible labels produced by the model. Precision, recall, and f1 scores were reported. Sam 

Lowe had this to say about the accuracy statistic of the analysis: 

Note, should probably ignore accuracy metric again, but in this case at the per-label 

level a multi-label dataset has a huge number of true negatives which make the 

accuracy figure pretty meaningless. E.g. in a situation where there are 10 positive items 

and 990 negative items, if a model simply predicts negative for everything, its accuracy 

figure still appears very high (0.99) even though its clearly not performing to a useful 

level. (Go_emotions-Dataset/Eval-Roberta-Base-Go_emotions.ipynb at Main · 

Samlowe/Go_emotions-Dataset, n.d.) 
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Due to that, accuracy scores have been omitted from overall the results. The results show that 

Roberta-base-go_emotions outperforms EmoRoBERTa in all three statistics. 

 
EmoRoBERTa roberta-base-go_emotions 

precision 0.482 0.542 

recall 0.5 0.577 

f1 0.482 0.541 
 

Table 3 simple mean of labels 

Evaluation metrics for the EmoRoBERTa and roberta-base-go_emotions models. 

 

 

Table 4 shows the same analysis can be performed, but instead of using a simple mean to 

compute the values, a weighted mean (based on support level) was used. The results again 

show that roberta-base-go_emotions outperforms EmoRoBERTa in all three statistics. 

 
EmoRoBERTa roberta-base-go_emotions 

precision 0.517 0.572 

recall 0.585 0.677 

f1 0.544 0.611 
 

Table 4 weighted average of labels (using support) 

Evaluation metrics for the EmoRoBERTa and roberta-base-go_emotions models. 

 

A more detailed comparison of the models can be done by examining statistics for each 

individual label. 

Table 5 (roberta-base-go_emotions) and 

Table 6 (EmoRoBERTa) show the results of this operation. 
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emotion accuracy precision recall f1 mcc support threshold 

admiration 0.94 0.651 0.776 0.708 0.678 504 0.25 

amusement 0.982 0.781 0.89 0.832 0.825 264 0.45 

anger 0.959 0.454 0.601 0.517 0.502 198 0.15 

annoyance 0.864 0.243 0.619 0.349 0.328 320 0.1 

approval 0.926 0.432 0.442 0.437 0.397 351 0.3 

caring 0.972 0.426 0.385 0.405 0.391 135 0.4 

confusion 0.974 0.548 0.412 0.47 0.462 153 0.55 

curiosity 0.943 0.473 0.711 0.568 0.552 284 0.25 

desire 0.985 0.518 0.53 0.524 0.516 83 0.25 

disappointment 0.974 0.562 0.298 0.39 0.398 151 0.4 

disapproval 0.941 0.414 0.468 0.439 0.409 267 0.3 

disgust 0.978 0.523 0.463 0.491 0.481 123 0.2 

embarrassment 0.994 0.567 0.459 0.507 0.507 37 0.1 

excitement 0.981 0.5 0.417 0.455 0.447 103 0.35 

fear 0.991 0.712 0.667 0.689 0.685 78 0.4 

gratitude 0.99 0.957 0.889 0.922 0.917 352 0.45 

grief 0.999 0.333 0.333 0.333 0.333 6 0.05 

joy 0.978 0.623 0.646 0.634 0.623 161 0.4 

love 0.982 0.74 0.899 0.812 0.807 238 0.25 

nervousness 0.996 0.571 0.348 0.432 0.444 23 0.25 

optimism 0.971 0.58 0.565 0.572 0.557 186 0.2 

pride 0.998 0.875 0.438 0.583 0.618 16 0.1 

realization 0.961 0.27 0.262 0.266 0.246 145 0.15 

relief 0.992 0.152 0.636 0.246 0.309 11 0.05 

remorse 0.991 0.541 0.946 0.688 0.712 56 0.1 

sadness 0.977 0.599 0.583 0.591 0.579 156 0.4 

surprise 0.977 0.543 0.674 0.601 0.593 141 0.15 

neutral 0.758 0.598 0.81 0.688 0.513 1787 0.25 
 

Table 5 Per-label metrics (maximizing f1) for the roberta-base-go_emotions model 

Evaluation metrics for the EmoRoBERTa and roberta-base-go_emotions models. 
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emotion accuracy precision recall f1 mcc support threshold 

admiration 0.936 0.657 0.645 0.651 0.615 504 0.15 

amusement 0.975 0.71 0.833 0.767 0.756 264 0.35 

anger 0.954 0.41 0.561 0.473 0.456 198 0.15 

annoyance 0.914 0.301 0.353 0.325 0.28 320 0.1 

approval 0.921 0.377 0.33 0.352 0.311 351 0.45 

caring 0.974 0.48 0.452 0.466 0.453 135 0.5 

confusion 0.968 0.432 0.412 0.421 0.405 153 0.45 

curiosity 0.932 0.411 0.694 0.516 0.501 284 0.05 

desire 0.982 0.429 0.434 0.431 0.422 83 0.05 

disappointment 0.944 0.2 0.338 0.251 0.232 151 0.05 

disapproval 0.926 0.319 0.453 0.375 0.342 267 0.1 

disgust 0.977 0.491 0.439 0.464 0.453 123 0.65 

embarrassment 0.993 0.524 0.297 0.379 0.392 37 0.3 

excitement 0.974 0.363 0.476 0.412 0.403 103 0.35 

fear 0.987 0.529 0.59 0.558 0.552 78 0.65 

gratitude 0.977 0.788 0.878 0.831 0.82 352 0.05 

grief 1 1 0.667 0.8 0.816 6 0.3 

joy 0.975 0.603 0.491 0.541 0.532 161 0.65 

love 0.971 0.634 0.815 0.713 0.704 238 0.05 

nervousness 0.995 0.4 0.261 0.316 0.321 23 0.4 

optimism 0.964 0.467 0.425 0.445 0.427 186 0.1 

pride 0.996 0.333 0.25 0.286 0.287 16 0.2 

realization 0.967 0.27 0.138 0.183 0.178 145 0.9 

relief 0.996 0.263 0.455 0.333 0.344 11 0.1 

remorse 0.991 0.543 0.679 0.603 0.602 56 0.05 

sadness 0.974 0.552 0.442 0.491 0.481 156 0.35 

surprise 0.971 0.446 0.496 0.47 0.456 141 0.25 

neutral 0.732 0.577 0.7 0.632 0.43 1787 0.05 
 

Table 6 Per-label metrics (maximizing f1) for the EmoRoBERTa model 

Evaluation metrics for the EmoRoBERTa and roberta-base-go_emotions models. 

 

Both models were then used to analyze The Scarlet Letter by Nathaniel Hawthorne. This 

was done in order to evaluate the outcomes when the specific type of data being used (literary 

works) were fed into the model. 
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 The model was applied on specific grouping types, either paragraphs or sentences, for 

the entirety of the work. Then the results were used to create boxplots to examine the model’s 

output. 

Figure 30 and Figure 31 shows just the neutral label. The neutral label was separated 

from the other twenty-seven labels since the values present on the neutral label are vastly 

different from the other labels. Figure 30 uses paragraph groupings and Figure 31 uses 

sentence groupings. 

 

Figure 30 Emotion Classification Comparison (Paragraphs, Neutral, Different Models) 
Displaying the difference in detecting the "neutral" classification between the EmoRoBERTa and roberta-base-
go_emotions models (outliers were not detected.) 

 

 

Figure 31 Emotion Classification Comparison (Sentences, Neutral, Different Models) 
Displaying the difference in detecting the "neutral" classification between the EmoRoBERTa and roberta-base-
go_emotions models. 
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Figure 32 and Figure 33 then show the other twenty-seven labels for the paragraph 

grouping. Figure 32 has the outliers removed from the graph so that the viewer can make a 

better examination of the box and whiskers of the plot. Figure 33 is the same chart but the 

outliers are included. The combination of the two charts allows for a fuller examination of the 

data. 

Figure 34 and Figure 35 are composed identically to Figure 32 and Figure 33 but use a 

sentence grouping instead of the paragraph grouping. 
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Figure 32 Emotion Classification Comparison (Different Models, w/o Outliers) 
Comparison of EmoRoBERTa and roberta-base-go_emotions models. Outliers removed for clarity on box plots. 
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Figure 33 Emotion Classification Comparison (Different Models, w/ Outliers) 

Comparison of EmoRoBERTa and roberta-base-go_emotions models. 
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Figure 34 Emotion Classification Comparison (Different Item Grouping, w/o Outliers) 

Comparison of EmoRoBERTa and roberta-base-go_emotions models. Outliers removed for clarity on box plots. 
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Figure 35 Emotion Classification Comparison (Different Item Grouping, w/ Outliers) 

Comparison of EmoRoBERTa and roberta-base-go_emotions models. 
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These results show that roberta-base-go_emotions outperforms EmoRoBERTa. 

Interestingly, these graphs show the results can vary depending on the grouping type. 

When taken individually, two sentences being used to convey two ideas may present two 

different meanings or emotions. When those two sentences are combined into a single 

paragraph, a completely new third idea can be conveyed. The overall meaning and emotion can 

change to reflect the third idea. 

The results being different for both paragraphs and sentences is a feature of the 

program. Users are allowed to perform analysis on both types of groupings. 

Ease of use was both simple and hard. Once all the requirements were put in place, 

using the model in Python required a single import statement, a single line to instantiate the 

object that represents the model, and a single call to a method of the model’s object. The two 

models are so similar that the only thing that needed to be done to switch between the two 

models is changing two parameters on the instantiating call. All things considered, using the 

model once the requirements were in place was easy. 

The initial setup of the environment to run the models was both simple and complicated. 

Adding a library to the environment was simple. However, after the execution speed of the first 

implemented model was tested and found to be very slow, adjustments to the environment were 

attempted. 

Both models are fully capable of being run on the CPU alone. Both models use neural 

networks and are capable of being run on the GPU as well. GPU execution of the models can 

greatly speed up execution time. This type of execution requires the installation of specific 

versions of some Python libraries, as well as drivers for the end user’s GPU. 

As a large portion of the program was already built, the models had to be integrated with 

a specific setup. The program requires a specific version of Python. Python 3.11.5 was selected 

as it was the latest stable version available when this project was started. It was not known at 

the time that the GPU version of TensorFlow, one of the aforementioned libraries, is no longer 
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supporting on the Windows operating system. To work around this, an older version of 

TensorFlow can be installed. However, the older versions of TensorFlow are not built against 

the newest versions of Python. A downgrade to Python 3.9.x was needed. This obviously 

caused a lot of issues. 

Before major changes to the program were made, a separate test environment was 

created just for the models in question. Different combinations of Python versions, models, and 

CPU and GPU bound computations were tested to find an acceptable combination. The test 

data was an unpublished book penned by the author. The test data had approximately 53,000 

words, 3,700 sentences, and 1,100 paragraphs. Unless otherwise noted, execution times are 

approximate averages based off multiple runs of each setup. 

The first test was used as a baseline and involved the first model selected, 

EmoRoBERTa, in using Python 3.11.5, running only the CPU. Execution time was 14 minutes 

for sentences. 

To test what effect downgrading Python would have, the same setup was used except 

Python was downgraded to 3.9.18. Execution time doubled to 28 minutes. 

To test what effect enabling GPU acceleration would have, the same setup as the last 

test was used except now GPU enabled versions of TensorFlow were substituted in for the 

CPU-only versions. Execution time decreased to 11.9 minutes. 

As the last test only provided a 15% savings in execution time, the roberta-base-

go_emotions model was chosen as the second model for evaluation. The first test for this model 

still utilized Python 3.9.18 but changed back to only using the CPU. Execution time decreased 

to just 2.5 minutes. 

The next step was to test the effect running on a GPU would have on the roberta-base-

go_emotions model. Execution time decreased to 50 seconds. 
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Now possessing a fast model, attempts were made to optimize the GPU-only 

parameters. The addition of a single parameter to modify the batch size of processed items was 

able to further reduce the total execution time to just 12 seconds. 

This was a massive improvement over the first few execution times and warranted 

changing the environment for the program. However, this was going to be a lot of work as it 

required modifying getting a lot of open-source software configured. As this speed savings was 

discovered late in the process of creating the program, one last test was run to find an easier 

solution. 

The roberta-base-go_emotions model was then run in Python 3.11.5 using just the CPU. 

The execution time was only 55 seconds. While not as fast as running the same model on the 

GPU in a compatible version of Python, this was an acceptable increase in speed for almost no 

increase in complexity. Thus, the final decision was to use the roberta-base-go_emotions model 

as the environment was already set up, with future plans to modify the environment to enable 

GPU processing for users who have that capability. 

The models examined are very good at what they do given the complex nature of their 

task, but their evaluation metrics (e.g. precision, recall) could be better. 

The data set used to train the models consists of reddit.com comments. The way people 

communicate on reddit is vastly different than the majority of literary works. As such, the 

performance of the model on literary works could suffer. 

Relatedly, the source timeframe of the reddit comments is within the last two decades. 

Languages are not static. Languages change and adapt to the needs of its speakers and writers 

over time. Using this model to operate on older texts may reduce the overall accuracy. This is 

particularly important as all of the sample texts utilized here are works from the public domain 

and were written at least ninety-five years ago. Using modern literary works, as well as time 

period appropriate literary works might help improve the results the models generate. 
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Some of the emotion labels were underrepresented in the reddit comments, leading to 

poorer performance on specific labels (e.g. grief.) Training the models on additional data that 

shows the underrepresented labels should decrease the error rate on these labels. 

The models also have an upper limit on the number of tokens they can process. The 

solution for this project was to ignore any tokens past that limit, but that means some data was 

ignore. The frequency that this happen was very low so it didn’t have a large impact, but the 

ideal situation would throw away no data. 

The ability to detect emotions present was a core requirement of the program. Without 

this feature, the program would not be successful. This feature works and can be built upon by 

the other features. 

Emotion Classification Probability Scores 

The Raven by Edgar Allan Poe will once again be used as the analysis subject for the 

same reasons described above. Figure 37 shows the probabilities for curiosity, desire, fear, and 

sadness to be present. 

 

Figure 36 Emotion Probability - Multiple Emotions 
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Subject: The Raven by Edgar Allen Poe. This shows the emotion probabilities for curiosity, desire, fear, and sadness. 

Stanza two has a large spike in desire. When examining the poem, the following partial 

line is found: “Eagerly I wished the morrow” This is a really clear instance of desire being 

expressed. 

Corresponding with that spike in desire is a smaller, but still noticeable, increase in 

sadness. The rest of that stanza deals the narrator expressing his feelings of loss relating to the 

character of Lenore. He also describes the month of December as bleak. The other three major 

detections of sadness come in stanzas eight, twelve, and sixteen. The eighth stanza talks about 

the raven brought a smile to the narrator’s “sad fancy.” The twelfth stanza has a similar phrase 

in “still beguiling all my sad soul into smiling,” The sixteenth stanza has the narrator instructing 

the raven to give him information: “Tell this soul with sorrow laden” In every instance, the 

narrator is directly referring to himself as being very sad. 

Stanza five sees the narrator attempting to communicate with an unknown person that is 

later revealed to be the raven. The narrator is looking into darkness, “wondering, fearing, / 

Doubting” as he tries to understand who has come to visit him. As the narrator directly describes 

being fearful, the increase in the probability of fear is expected. 

In stanza eight, the narrator attempts to communicate with the raven for the first time. 

Curious as to if the raven was the creature that had echoed the name Lenore back to him a few 

stanzas earlier, the narrator implores the raven to identify itself with a name. This act of 

inquisition does show curiosity, but not as strongly as elements of sadness and desire have 

been seen before. 

Figure 37 shows anger separately from the previously discussed emotions as the 

probably score for anger is much lower than the other emotions and would hard to discern to the 

values for anger on the previous graph. Examining stanza seventeen reveals that the narrator is 

shrieking at the raven and every sentence with an exclamation mark. This could be interpreted 
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as anger, though it is not the most clearcut of assumptions, which explains the low score and 

the spike in value for anger in this instance. 

 

Figure 37 Emotion Probability - Low Chance 

Subject: The Raven by Edgar Allen Poe. This shows the emotion probabilities for anger. 

Finally, one emotion that is not that present will be examine. Figure 38 shows the probability of 

pride being present. The models do detect some small level of pride, and the level does 

fluctuate over the course of the work, but the maximum value is slightly less than half a percent. 

Comparing this result to the poem confirms that there no paragraphs that give the impression of 

pride. 

Given the higher scores seen in the above analysis, it could be said that a person using 

this tool could reasonable put a lower threshold on the scores to be evaluated, perhaps one 

percent or half a percent, depending on the level of detail the analyst is pursuing. 
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Figure 38 Emotion Probability - Not Present 

Subject: The Raven by Edgar Allen Poe. This shows the emotion probabilities for pride, which is practically not present. 

 

The above analysis was performed only by looking for interesting points in the 

visualizations created by this program. This shows, while not perfect in its implementation, that 

applying an emotion classifier to small sections of a larger literary work can produce interesting 

and actionable results. 

The ability to detect emotions present at different points within a story was a key 

requirement of the program. This feature works and is demonstratable. 

Entity Tonality 

The entity tonality scores are highly effected by any imperfections in the generation of either 

component part of the entity tonality score (those being the entity presence score and the 

emotion probability score.) 

 One of the most important things about the calculation of the entity tonality score is that 

the entity presence scores are restricted to a range of [0, 1]. This is a very important step to take 
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as successive mentions of an entity can drastically increase their presence score. The measure 

of an entities presence being between 0 (not present) and 1 (fully present) are easy to 

conceptualize. How would a presence score of 4.5 be interpreted? When looking at entity 

presence alone, this high score allows the entity to still be fully present (score greater than or 

equal to 1), even after the entity gets mentioned. This can be interpreted as the character 

having been so central to the story for a few paragraphs/items that the reader doesn’t quickly 

forget that they are present. If the algorithm were to multiple the emotion presence score 

against an entity presence score greater than 1, there is the potential the final entity tonality is 

above 1. (e.g. an entity presence of 4.5 times an emotion probably of 0.25 yields an entity 

tonality score of 112.5.) This reads as “there is a 112.5% chance of the specified emotion when 

the entity is present. 

 In the story Alice in Wonderland by Lewis Carroll, the character of Alice often feels anger 

and annoyance at the same time. The entity tonality scores on display in Figure 39 confirm this 

claim. 

 

Figure 39 Entity Tonality - Finding Corresponding Emotions for an Entity 

Subject: Alice in Wonderland by Lewis Carroll. 
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Similarly, Alice often alternates between being confused by the strange sights of 

Wonderland to having flashes of insight when she understands how the world works. Figure 45 

shows these alternating moments. 

 

Figure 40 Entity Tonality - Finding Alternating Emotions for an Entity 

Subject: Alice in Wonderland by Lewis Carroll. 

The user wants to analyze the tea party scene. They know that Alice, the Mad Hatter, 

the Dormouse, and the March Hare are all present. They identify the scene in the book by 

filtering by those entities as shown in Figure 41 and Figure 42. 
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Figure 41 Entity Tonality – Finding A Scene by Entity Presence (No Emotions Selected) 

Subject: Alice in Wonderland by Lewis Carroll. 

 

Figure 42 Finding A Scene by Entity Presence (No Emotions Selected, Zoomed In) 

Subject: Alice in Wonderland by Lewis Carroll. 

Having found the scene they want to analyze, and thinking that many of the characters 

felt annoyed during the tea party, the user adds the emotion annoyance to display as shown in 

Figure 43. This figure shows that even though all four characters are present for the tea party, 
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they each have slightly different levels of annoyance. This is evidence that a less present 

character is attributed a smaller amount of the emotion probabilities at that item. 

 

Figure 43 Entity Tonality – Multiple Characters with Different Tonality Scores For The Same Emotion 

Subject: Alice in Wonderland by Lewis Carroll. 

 Finally, the user wants to evaluate some summary statistics of the displayed series and 

brings up the data summary popup as shown in Figure 44. The statistics show the values for the 

entire series. The sum shows that, overall, Alice was present for more items in the story that 

were classified as annoying. The max shows that Alice was also present for the highest emotion 

probability of being annoyed. The average shows the overall emotion probability for the whole 

series. The average (present) statistic takes the average only when an entity is present (has a 

score greater than 0.) 
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Figure 44 Data Summary Popup 

Subject: Alice in Wonderland by Lewis Carroll. 

 

One improvement that could be made to the data summary popup is taking into account 

the user filters for first item, last item, and max number of items. Another option would be to just 

display the summary statistics for the window the user has zoomed in on. 

These are easy to understand statistics that also reaffirm the user’s domain knowledge 

of the subject matter and show that this metric and associated visualizations are effective. 

Revision Tracking 

The revision tracking service works as expected. Changes made to tracked files get 

saved and the user can process them at any time when the main program is running. 

There are a few limitations with the revision tracking service as it currently stands. The 

main reason for most of these limitations is that file tracking features beyond the basics usually 

requires complex win32 programming. It was decided that spending time on other features was 

more important that adding to revision tracking capabilities. 

First, if the user saves the same file multiple times but doesn’t change any content, a 

new unprocessed revision will still be created. An improvement would to be to detect when the 

file is opened and close and only save the last revision. This makes the most sense as some 
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people can write or edit for hours at a time without closing the file, but may have dozens of 

manual saves to make sure they don’t lose their work.  

Another limitation is the service cannot track when a file is moved to a different location 

on the file system. It is smart enough to determine if a file still exists though. 

A limitation in the main program related to revision tracking is that the data on the works 

page and database page that displays the unprocessed revisions does not updated in real time. 

It is currently possible to refresh the page by switching to another page and then returning to the 

original page. A solution to this is to have a simple timer that queries the database for new items 

and adds them to the collections that are already databound to the view. 

One of the main limitations of the revision tracking is that only plain text files are 

supported as input. Other file types could be easily be supported though, especially if there are 

open source libraries that will allow easy raw text extraction. 

Despite the limitations, the goal of the revision tracking feature was met. It easily tracks 

files that are input to the main program. Users do not have to remember to load each individual 

revision into the main program; all the user has to do is click a button to process unprocessed 

revisions whenever they are present. 

Ethical Implications 

The ethical implications of the creation of any tool need to be considered, especially 

when that tool makes use of artificial intelligence. 

One of the core aspects of this tool is that any data that is put into it stays on the user’s 

system. The app is not connected and will not send data to anyone (though some of the Python 

emotion classification models may require a small, automated download before they are used.) 

This is very important given the large, justified concerns about data privacy in the modern world. 
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This becomes more relevant if this tool gets released to the public. Very few users 

actually read the terms of service or the end user license agreements for software they install. 

Many of these terms see the end user giving full rights to their content to the company who 

owns the program. These terms often appear similar to the following passage: You grant us a 

non-exclusive, worldwide, royalty-free, perpetual, irrevocable, sublicensable, and transferable, 

and all others rights required to license to use, publish, access, use, store, preserve, transmit, 

reproduce, distribute, modify, translate, create derivative works from, and display your content in 

for the purpose of ... 

Adding to the often overreaching terms, if an otherwise well-behaving company gets 

bought out by another company, the new owners usually can modify the terms of service and 

the user may find that a large company is profiting off their hard work. 

There are also both positive and negative outcomes that could potentially happen if a 

tool like this was made available to the public. 

Positive Outcomes: 

• Writers can use this tool to speed up their creative process to see if what they think 

they are writing aligns with what they are actually writing. 

• Writers can discover new ways of thinking about their writing that they may not have 

previously thought about. 

• Editors can use this tool to add to their feedback to their clients. 

• A publishing house who may not have read a manuscript for many reasons (lack of 

staff, a policy of not accepting unsolicited manuscripts, etc.) may run the manuscript 

through the tool, find something interesting, and decide to spend the time to actually 

read the manuscript. 

• A literary agent may use some of the visualizations generated by this tool to help sell 

a work to a publisher. 
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• Readers can learn new things about a favorite literary work without harming 

anybody. 

Negative Outcomes: 

• A publishing house may use this tool to reject a manuscript before they read it by 

creating an additional requirement that manuscripts must meet. (Many larger 

publishing houses don’t accept unsolicited manuscripts however.) 

• Students may use this tool to do some of their work for them instead of doing it 

themselves. 
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Conclusions 

Goals 

The goals of this project were to create an application that works offline, manage 

historical versions of a literary work, allow the user to perform data cleaning without leaving the 

application, and is able to analyze literary works in new and interesting ways. Every goal was 

achieved. 

Contributions 

The final application demonstrates that there is untapped potential in version control for 

literary works. The implementation in this program is limited, but inspiration should be drawn 

from existing software version control systems. 

Demonstrates that effective machine learning algorithms targeting literary analysis (a 

complex task) can be deployed to an individual’s computer, can run efficiently, produce usable 

results, and does not need the infrastructure of cloud computing to function. 

Gives the ability for end users who are not data scientists the ability to clean their data in 

a fairly straightforward way. 

Measuring multiple emotion probabilities and groups of emotions can produce graphs 

with forms similar to Kurt Vonnegut’s “shapes of stories”, but with more than the few shapes he 

and others have come up with. 

Entity tonality combines most of the above features and provides a new way of analyzing 

literary works. 
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Future Work 

There are a number of areas where the ideas presented here could be further developed. Some 

of these ideas are focused on improving the functionality of this application while others could 

find use in a more general sense. 

Entity Presence 

The entity presence feature developed here is quite simple. The algorithm simply searches a 

body of text for strings that match the name of named entity as detected by the spaCy library. A 

more robust solution would analyze the type of presence of a character (e.g. are they present 

and interacting with other characters, are they not present but being thought about, are they 

present but not directly participating in the story, etc.) 

Emotion Classification 

The model used here is built using a dataset comprised of comments on the website 

Reddit. The writing style used for internet discussion is often very different from written works of 

literature. Training the model on a dataset of literary works could potentially increase the 

accuracy of the results. 

Furthermore, the data used in the training of the model comes from the last 18 years 

(the time since Reddit was founded.) Languages change over time, and trying to analyze older 

literary works with a modern dataset may be problematic. Datasets from time periods could 

increase the efficacy of the model. 

Entity Tonality 

Entity tonality is the largest success of this project. 
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Revision Tracking 

Many users today expect their apps to be connected to some kind of data cloud where 

they can share or save data without having to worry about local files. Enabling some kind of 

cloud saving would make collaboration with others easier. (e.g. if a writer and their editor both 

have access to the same source file, all new additions and edits could be made to a single file, 

which could then be tracked and distributed to any user who has access to that file. 

Another desirable feature would be the ability to track how long each revision took to 

produce. This could be used in other analysis. (This is further discussed below.) 

Other Analytics 

The Flesch Reading Ease and Flesch-Kincaid Grade Level metrics were included in the 

hopes that they could be used in conjunction with dialogue detection. On they’re own, they’re 

useful statistics, but there is also the potential to combine them with dialogue detection to try to 

detect any differences between dialogue and narrative text. 

The reading level metrics could also be applied on a per-entity basis to see if a writer 

purposely alters the complexity level to match specific entities. 

Other dialogue related metrics could be measuring the count of dialogue tags, the 

frequency that dialogue is written as one large block versus being interspaced with narrative 

text, and measuring how much each entity speaks. 

Frequently used phrases or combinations of words could also be helpful to a creative 

type to check if they’re overusing certain items. 

Additional basic statistics could help authors identify patterns about how they write. 

Possessing the start time in addition to the end time, and thus the overall time it took to produce 

a revision, could help writers identify which parts of the day they are the most productive and 

least productive. The same concept could be applied to days of the week. 
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Producing a difference file for two revisions (i.e. seeing what words are new, changed, or 

deleted) could be utilized in a few ways as well. Differences, when combined with writing time 

information, and performing entity detection on new text might show that writing certain entities 

is easier than writing other entities. 

Comparing the emotion probabilities for different works could help identify trends for a 

writer or a series of books. 

The interactive dashboards could be improved via the inclusion of automatic 

chapter/scene start markers. 

A user might better be able to interpret their visualizations if they had the ability to create 

annotations for the graphs.
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Appendix A: User Interface Screenshots 

 

Figure 45 User Interface - People View 

The view the user gets when they start the program. This displays the People in the database. 
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Figure 46 User Interface - People View, Filtering 

The user can filter the shown people by typing into the text field. In this case the user typed “Wil” which matches “William 
Shakespeare” and “Jacob and Wilhelm Grimm” 
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Figure 47 User Interface - Sorting by Works 

Clicking on a person in the People view shows either the works they’ve contributed to or the revisions that are attributed 
to them. By default works are shown. Each work displays summary statistics about itself. 
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Figure 48 User Interface - Expanding a Work to View Revisions 

Clicking on a work in expands that work to show all revisions in that work that are attributed to the selected person. 
Select visualization options that are valid only on works are shown. These buttons will not appear if the certain 
conditions are not met. (e.g. If there is only one revision in a given work, there is no need to display “Word Count / 
Revision” and “Word Count Change / Revision.”) 
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Figure 49 User Interface - Sorting by Revisions 

Clicking on a person in People view with the Show Revisions option toggled to on shows all the Revisions attributed to 
that person. 
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Figure 50 User Interface - Selecting a Revision 

Clicking on any revision shows the details of that revision. Summary statistics for the revision are shown. This is also 
where the revision attribution to a person can be changed. Other information, such as the time the revision was 
completed can also be changed.  
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Figure 51 User Interface - Hiding The People List 

If the visual display of all the People gets too cluttered for the user, they can hide all the people by clicking on the 
“People” label in the top left corner. 
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Figure 52 User Interface - Works View 

The Works view works mostly the same as the People view. Instead of selecting a person and viewing any works and 
revisions they’ve contributed to, the user selects a work and can see all revisions for that work, no matter who made 
the Revision. This is also where the user can add new revisions to the selected work. When a revision is added by 
selecting a local file to read, the location of the file also gets added to the database. If the version control service is 
running, it uses these file locations to watch for new revisions. When processing a new revision, either by manually 
loading a file or by using data stored by the windows service, the program will use the chosen Paragraph Delimiter 
option. 
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Figure 53 User Interface - Works View - Data Processing 

If the windows service has stored data about a revision that was made to a tracked file, the user can process that data 
from Works page. The user can either process the revisions one by one, or all at once. 
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Figure 54 User Interface - Visualization - Word Frequencies 
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Figure 55 User Interface - User Filter - First Item 

This is the same visualization shown in Figure 54, except the first item visible filter has been set to 5. 
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Figure 56 User Interface - User Filter - Max Items 

This is the same visualization shown in Figure 55, except the first item visible filter has been set to 5. 
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Figure 57 User Interface - User Filter - Last Item 

This is the same visualization shown in Figure 56, except the first item visible filter has been set to 10.  
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Figure 58 User Interface - User Filter - Foreground Color 

The user is able to select any color they want for the foreground color in some charts. In other charts, the user can 
select a color and the nearest match on a predefined color palette will be used. Selections can be made from the color 
picker control on the left, or by clicking on any one of the predefined color boxes on the right. 

  



111 

 
Figure 59 User Interface - User Filter - Background Color 

The user is able to select the background color of a chart just as they are able to select the foreground color of a chart. 
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Figure 60 User Interface - Visualization – Part of Speech Frequencies 
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Figure 61 User Interface - Visualization - Word Count Total shown by Revision Date 
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Figure 62 User Interface - Visualization - Word Count Change shown by Revision Date 

  



115 

 
Figure 63 User Interface – Part of Speech Usage Comparison Popup 

When the user selects the Part of Speech Usage visualization on a work, they must select a work to compare to. 
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Figure 64 User Interface - Visualization – Part of Speech Comparison Between Two Different Works. 
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Figure 65 User Interface - Visualization – Sentence Lengths 
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Figure 66 User Interface – Chart Interactivity – Zoom Window (Pre Zooming) 

The user can right click on a chart and drag a window. When the user releases the mouse, the chart will be zoomed in 
to the selected window. 
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Figure 67 User Interface – Chart Interactivity – Zoom Window (Post Zooming) 

This is the same visualization shown in Figure 66, except now the chart has been zoomed into the window selected by 
the user. 



120 

 

Figure 68 User Interface – Visualization – Entity Presence Scores (Single Entities) 

The user is able to select multiple data series to display. The entity select is set to show single entities as denoted by 
the selected number 1. The first color used will be as close to the foreground color the user has chosen. Further colors 
will programmatically be determined. A color palette is created based on the number of data series that needs to be 
displayed. Then the colors are sorted by hue, value, then saturation using the HSV color space. The list of colors is 
made into a circularly linked list, and colors are chosen to be equidistant from each other. 
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Figure 69 User Interface – Visualization – Entity Presence Scores (Groups with Any Modifier) 

This is the same visualization shown in Figure 68, except instead of showing single entities, the user has chosen to 
show groups of two that contain the any selected entity. This is denoted by the selected number 2 and the selected 
rule “Any.” 
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Figure 70 User Interface – Visualization – Entity Presence Scores (Groups with All Modifier) 

This is the same visualization shown in Figure 68, except instead of showing single entities, the user has chosen to 
show groups of two that contain all of the selected entities. This is denoted by the selected number 2 and the selected 
rule “All.” 



123 

 

Figure 71 User Interface – Visualization – Entity Presence Scores (Single Entities and Groups with All Modifier) 

This is the same visualization shown in Figure 68, except instead of just showing single entities, the user has also 
chosen to show groups of two that contain all of the selected entities. This is denoted by the selected numbers 1 and 
2 and the selected rule “All.” 
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Figure 72 User Interface – User Filter – Fill Color (Lower Transparency) 

This is the same visualization shown in Figure 68, except the user has changed the value of the Fill Color filter so the 
area under the lines is less transparent. 
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Figure 73 User Interface – User Filter – Fill Color (Higher Transparency) 

This is the same visualization shown in Figure 68, except the user has changed the value of the Fill Color filter so the 
area under the lines is more (100%) transparent. 
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Figure 74 User Interface – User Filter – Smoothing Function Selection and Parameters 

This is the same visualization shown in Figure 68, except the user has changed the value of the smoothing function to 
be a Rolling Average (Centered) instead of the default Lookaround smoothing function. The user can also change the 
parameter of the function by using the slider control. 
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Figure 75 User Interface – Visualization – Emotion Probability Scores (Single Emotions) 

The user has selected multiple emotions to display and has changed the smoothing function to the centered rolling 
average with a parameter value of 40. 
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Figure 76 User Interface – Visualization – Emotion Probability Scores (Groups with Any Modifier) 

This is the same visualization shown in Figure 75, except the user has chosen to display combinations of 2 emotions, 
the same way they can display groups of entity presence scores. 
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Figure 77 User Interface – Visualization – Entity Tonality (Single Entity, Multiple Emotions) 

The user has chosen to display four different emotion probability scores combined with a single entity presence score. 
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Figure 78 User Interface – Visualization – Entity Tonality (Multiple Entities, Single Emotions) 

The user has chosen to display one emotion probability score combined with the presence score for two single entities. 
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Figure 79 User Interface – Visualization – Entity Tonality (Multiple Entities, Entity Grouping, Single Emotions) 

This is the same visualization shown in Figure 78, except the user has also decided to add in the grouping of both 
entities. 
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Figure 80 User Interface – Database Page (Loaded People and Works) 

This page, which is accessed through the “hamburger” menu on the top left, allows the user to deselect specific people 
and works from being shown on the People and Works pages. With a lot of data in the database, selectively loading 
only the data a user needs could speed up the execution and responsiveness times of the program. The File Tracking 
and Unprocessed Revisions sections of this page are below the Works section. 



133 

 

Figure 81 User Interface – Database Page (File Tracking and Unprocessed Revisions) 

This portion of the database page allows the user to turn file tracking on or off for the background revision tracking 
service. Here, the file paths of the files have been redacted. Additionally, any unprocessed revisions are listed here in 
addition to being listed on the Works page. The user has the option of processing each individual unprocessed revision 
in any order that they want. They can also remove any unprocessed revision. (A user may want to do that if a file had 
been saved multiple times in quick succession, as was the case here.) 
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Figure 82 User Interface – About Page 

This page, which is accessed through the “hamburger” menu on the top left, displays some information about the 
program to the user. All open-sourced projects are mentioned, along with links to their source code on github.com, and 
which license the code is used under. An acknowledgement to the icons8.com website is also placed here as a 
requirement for using some of their icons in the program. Finally, a copy of the MIT and Apache licenses are included 
here as all of the open-sourced projects use one of these two licenses. 
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Figure 83 Figure 81 User Interface – Settings Page 

The settings page is where the user saves the locations for the Python311.dll and the path to the Python virtual 
environment. 


