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Chapter 1: Abstract 

The latest advances in genetic research have paved the way for innovative new applications of 

genetic data in areas such as ancestry research, forensic science, and medicine. However, the 

current Direct-To-Consumer (DTC) genetic platforms often have limited accessibility and utility, 

posing significant challenges for researchers and other professionals. Furthermore, concerns 

about the privacy and security of data within popular DTC companies persist among users. 

To address these limitations, a framework was developed for a predictive genetic analysis tool 

that prioritizes privacy, security, and user-friendliness. This study focused on predicting 

observable traits, including ancestry, biological sex, blood type, and eye and hair color, using 

single nucleotide polymorphisms (SNPs). A machine-learning-driven methodology was 

employed, integrating data preprocessing, standardized genotype encoding, and model 

evaluation. Models such as Gradient Boosting and Neural Networks were used to predict traits, 

demonstrating high accuracy across categories, including blood type and population groups 

(96%). The results demonstrate that using the proposed framework it is feasible to create a 

genetic analysis tool capable of bridging the gap between privacy and security and practical 

usability. It is important to note that the framework presented is adaptable, enabling its 

application across various industries. While this study focused on observable traits, future 

research can extend to various domains.  

Keywords: genomics, genetic platforms, direct-to-consumer (dtc), predictive genetic analysis, 

privacy, data security, observable traits, ancestry, machine learning, single nucleotide 

polymorphisms (snps), gradient boosting, neural networks, blood type, forensic science. 
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Chapter 2: Introduction 

The field of genomics has been growing rapidly in the last decade, leading to numerous 

innovations in various fields like healthcare, ancestry research, and forensic science. 

Applications of genetic research are at the forefront of everything from agriculture and food 

security to cancer research and criminal investigations 1. Part of these advancements are Direct-

To-Consumer (DTC) genetic testing services, which began to emerge in the early 2000s 2. The 

growing availability of private and relatively inexpensive genetic testing enabled many 

individuals to explore their ancestry and genetic makeup. However, while this allows individuals 

the opportunity to peek into their genetics, genetic analysis tools disproportionately revolve 

around customer use despite their numerous applications in various fields. Existing platforms 

and services such as 23andMe, AncestryDNA, MyHeritage, and even Promethease are heavily 

restricted in terms of data availability, authorized usage, and the information they provide 3–6. 

Given that these platforms hold massive amounts of DNA samples and analyzed data, such 

restrictions pose an obstacle for other domains, including research, forensics, and healthcare. In 

addition, some tools present overly complex reports, requiring prior knowledge in genetics to 

interpret them.  

Tools like Promethease, while technically elaborate, are often inaccessible to those with 

limited knowledge of genetics. Promethease generates reports that contain tens of thousands of 

entries, presenting raw, uncontextualized genetic information (approximately 25,000 genetic 

associated traits)7 that can overwhelm users without a strong scientific background. Additionally, 

the interface of Promethease is criticized for its lack of user-friendliness, failing to present 

findings in a clear or actionable format. Compounding these issues is the platform’s failure to 
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adequately disclose the limitations and uncertainties of its analyses, which may lead to 

misinterpretation or misuse of the information provided 7–9. 

Beyond technical complexity, there are many concerns regarding data privacy, 

management, and usage after being collected by the analyzing service. The rise of consumer 

genetic analysis companies has raised significant privacy and data protection concerns. For 

example, in October 2023, 23andMe suffered a major data breach, with nearly 7 million of its 

users’ genetic information being stolen 10. Concerns about privacy also apply to the ownership 

and storage of data. In 2019, for example, MyHeritage acquired Promethease and the database it 

was associated with, SNPedia, leading to the transfer and storage of users’ genetic profiles into 

MyHeritage's centralized databases 11,12. More recently, this year (2024), 23andMe was reported 

to face a possible purchase following financial struggles, which raises alarm over the possible 

transfer of customers’ genetic data to the acquiring company 13,14.  

This research addresses the critical need for a transparent, user-friendly genetic analysis 

platform by developing a framework for genetic analysis that prioritizes privacy and security. 

The proposed framework is designed to ensure that user data remains private and secure, never 

stored beyond the analysis process, thereby alleviating concerns of unauthorized use or breaches. 

Although this study was focused on the analysis of observable and measurable traits, which are 

currently predominantly applicable in forensic contexts, the underlying framework has the 

potential to be extended to other industries, including healthcare, nutrition, and ancestry research. 

Throughout this paper, I hope not only to demonstrate the feasibility of such a framework 

but also to establish a foundation for future genetic analysis research that would foster a balance 

between privacy, utility, and ethical data management. 
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Chapter 3: Background 

The study of genes and heredity has transformed our understanding of biology, medicine, 

and human diversity. The identification and interpretation of DNA variations that contribute to 

observable traits and biological functions, are a key part of this field. Among these variations, 

single nucleotide polymorphisms (SNPs) have emerged as critical markers for understanding 

human genetics. SNPs represent variations at a single nucleotide position in the genome and 

provide valuable insights into the genetic basis of inherited traits, susceptibility to diseases, and 

individual responses to medications. 

Human heredity occurs through the transmission of genetic material from parents to 

offspring, encoded within the structure of DNA. DNA is composed of nucleotides, each 

consisting of a sugar molecule, a phosphate group, and one of four nitrogenous bases: adenine 

(A), thymine (T), cytosine (C), or guanine (G). The sequence of these bases form genes, which 

encode instructions for protein synthesis. Proteins are constructed from amino acids, each 

specified by a three-letter codon in the DNA sequence, with specific codons signaling the start 

and stop of protein synthesis. Single nucleotide polymorphisms (SNPs) are variations at a single 

nucleotide position in the genome resulting from different types of mutations, including 

substitutions, insertions, or deletions, which may be synonymous (silent), missense (changing an 

amino acid), or nonsense (introducing a stop codon). These variations can influence protein 

structure and function, leading to differences in traits or susceptibility to disease. An allele refers 

to one of the alternative forms of a gene at a specific location (also called locus), often differing 

by one or more base pairs, which can result in varying effects on traits or phenotypes. Humans 

are diploid organisms, meaning they inherit two copies of each chromosome, one from each 
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parent. Therefore, humans carry two alleles at most locations (loci, plural for locus). If the two 

alleles are identical, the individual is considered homozygous at that locus and if the two alleles 

are different, they are considered heterozygous. 

Genome-wide association studies (GWAS) leverage SNP data to identify genetic variants 

associated with specific traits or diseases 15. Databases like dbSNP and initiatives such as the 

1000 Genomes Project have significantly enriched our knowledge of human genetic diversity 

16,17. dbSNP provides a repository of known SNPs, while the 1000 Genomes Project catalogs 

genetic variations across global populations, offering a foundation for exploring genetic 

contributions to health and disease. Together, these resources facilitate genetic studies that link 

SNPs to observable phenotypes, including physical traits, disease susceptibility, and 

pharmacogenomic responses. 

Single nucleotide variations play a significant role in determining a wide range of 

phenotypes, including observable phenotypes such as blood type, height, skin tone, hair color, 

and eye color 18. These phenotypes can generally be categorized as single-gene traits or 

polygenic traits. Single-gene traits are determined primarily by variations in a single gene, 

whereas polygenic traits often result from cumulative interactions between variations in multiple 

genes. Specific SNPs have been linked to these traits through genome-wide association studies 

(GWAS), providing insights into the genetic mechanisms underlying human genetic diversity 19.  

One example of single-gene inheritance in humans is the ABO blood group system. ABO 

blood groups are determined by the presence or absence of specific antigens on red blood cells. 

These antigens, encoded by the ABO, RH, and other blood group systems, are influenced by 

SNPs that alter glycosyltransferase activity 20. Studies have identified SNPs in the ABO gene as 

critical determinants of blood type 21. Similarly, the Rhesus (Rh) factor, an inherited protein that 
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can be found on the surface of the red blood cell, has been linked to SNP variations, 

demonstrating the straightforward inheritance patterns of single-gene traits 22. 

Alternatively, physical phenotypes such as hair and eye color are classic examples of 

polygenic traits. These traits are influenced by interactions between several genes associated 

with variations in melanin synthesis and transport. Some of the key genes include OCA2 and 

HERC2, which are often associated with eye color; and MC1R, which effects the production and 

ratio of eumelanin (dark pigment) to pheomelanin (light pigment) in hair and skin 23,24. Other 

genes, such as SLC24A5 and SLC24A4, have been shown to effect intracellular transporters 

important for the regulation and synthesis of melanin 25. The diversity of colors, from blond to 

black hair and blue to brown eyes, arises from variations in these genes, often linked to specific 

SNPs, other variants, their interactions with regulatory elements, and environmental factors. 

A broader view of genetic variation and SNP distribution can be seen in population 

genetics studies. Population genetics studies examine how genetic composition varies across 

populations under the influence of evolutionary processes such as natural selection, mutation, 

genetic drift, and gene flow 26. In humans, the distribution of SNPs among populations can help 

us better understand the diversity of human ancestry, health, and appearance. It can also help us 

uncover patterns of environmental adaptation, ancestral migration, and the genetic foundation of 

population-specific traits. Key resources, such as the 1000 Genomes Project, the Human Genome 

Diversity Project (HGDP), and the Simon Genome Diversity Project, have established 

comprehensive databases of global genetic variation 17,27,28. These resources can be further 

supplemented by other tools like the Allele Frequency Aggregator (ALFA), which provides 

comparative allele frequency data across major population groups 29.  
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Beyond ancestry, traits, and health, genetic research also has significant applications in 

forensics, including forensic genetic genealogy. In forensics, DNA analysis serves as a powerful 

tool, with applications that include identifying unknown individuals, tracking missing persons, 

and assisting in criminal investigations. In forensic genetic genealogy, SNP data is combined 

with ancestral records to trace familial lineages and use them to identify unknown individuals.  

Yet, despite the potential of these methods, the use of consumer genetic platforms by law 

enforcement remains extremely limited. Private DNA analysis companies rarely and reluctantly 

cooperate with law enforcement, despite research indicating that, depending on the case type, the 

majority of surveyed adults support police access to private DNA databases 30,31. Ironically, 

despite their stringent data-sharing guidelines and reluctance to disclose information with law 

enforcement, these companies have a history of security and privacy issues and have shown that 

they are willing to transfer user data completely during business acquisitions 32,33. 

Consumer genetic platforms such as 23andMe and AncestryDNA have popularized 

genetic testing by offering users insights into their ancestry, health predispositions, and traits. 

Despite having made genetic data more widely available, these platforms usually operate inside 

restricted frameworks, which restricts the use of genetic data by forensic labs and law 

enforcement. Additionally, storage and sharing of genetic data continues to raise ethical 

concerns, including privacy issues, potential misuse, and security vulnerabilities. 

These limitations highlight the growing need for a framework that bridges the gap 

between the complexity of genetic data and its practical applications in secure, private, and user-

friendly formats. This thesis aims to demonstrate the feasibility of designing a transparent, 

secure, and intuitive framework for a genetic analysis tool, which can be adapted to serve 

versatile functions across different fields. 
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Chapter 4: Methodology 

Overview 

Designed to generate insights based on genetic data, this thesis initially focused on physical 

characteristics, such as ancestry, biological sex, eye color, hair color, and blood type. These 

predictions have potential applications in areas such as forensic investigations, where 

reconstructing physical traits can aid in solving cases. Importantly, the methods discussed in this 

chapter can be applied to a wide range of attributes, enabling future revisions to incorporate 

genetic insights relevant to other fields like healthcare, nutrition, or personalized wellness. 

To develop the app, a quantitative approach was employed, integrating GWAS, population 

genetics, and machine learning. The methodology was carried out in three distinct phases: 

literature review and SNP selection, data collection and pre-processing, and data processing and 

model development. 

Section A: General Methodology  

Literature Review and SNP Selection 

The first phase of the study involved identifying SNPs associated with traits of interest. A 

detailed review of existing research was conducted, drawing from GWAS results and population 

genetics studies. Using GWAS, trait-specific SNPs were searched via the main search engine. 

Included in the search results (figure A) is the “Study Accession,” which links the study 

reporting this association (Figure B). 
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Figure A. A GWAS search result for ABO blood group associations. 

 

Figure B. Study accession details for the ABO blood group (O vs. non-O) trait. 

 

Reporting studies were reviewed for clarification and validity and key SNPs were 

selected based on their established associations with specific traits. For instance, SNPs in the 

ABO gene were identified for blood type determination, while MC1R, HERC2, and OCA2 were 

included for hair and eye color. For ancestry, SNPs associated with population-specific markers 

were identified by comparing allele frequencies in different populations using ALFA. Gender 

determination relied on SNPs located on the Y chromosome, particularly within the SRY region. 

A comprehensive SNP reference file was compiled for each trait, containing rsIDs, effect alleles, 

other alleles, and the associated phenotypes. The effect allele was defined as the allele associated 
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with the reference phenotype and used as the basis for encoding. Conversely, the other allele 

refers to the alternative allele that is either negatively associated with, or not associated with, the 

reference phenotype. For example, in the case of red hair color, the reference phenotype was set 

as red hair. The effect allele in this context is the allele that contributes to or is associated with 

the presence of red hair, while the other allele would be the alternative allele not associated with 

red hair. To ensure accuracy, the effect and other alleles were cross-referenced with dbSNP to 

verify consistency in rsID assignments and notations 34. 

Data Collection and Preparation 

Genetic data samples were obtained from publicly available sources. For ancestry 

analysis, datasets from the 1000 Genomes Project, the Simons Genome Diversity Project 

(SGDP), and the Human Genome Diversity Project (HGDP) were utilized. These datasets are 

provided in Variant Call Format (VCF) and include rsIDs, genotypes, and population group 

information for each sample 17,27.   

User-contributed datasets from openSNP were used to obtain data on hair color, eye 

color, and blood type 35. These datasets are uploaded in text format and combine genotype 

information from platforms such as 23andMe, Ancestry.com, and Illumina with self-reported 

phenotypes 35. Since the majority of the samples were taken from 23andMe, user-contributed 

samples were standardized to conform to the 23andMe format and converted into a CSV format. 

To prepare the data for analysis, raw genetic files were organized into a directory 

structure by user ID. SNP genotypes were extracted for each individual and combined with 

phenotype data in a unified format. The resulting datasets included user IDs, reported 

phenotypes, and genotypes for relevant SNPs, forming the foundation for subsequent processing. 
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Data Pre-Processing and Standardization 

Data preprocessing was a crucial step to ensure the consistency and quality of genetic 

samples. In DNA, the "forward (+) strand" refers to the sequence read in the 5′-to-3′ direction 

from left to right, while the "reverse (–) strand" refers to the complementary sequence written in 

the 5′-to-3′ direction from right to left.  

To maintain uniformity, all genotype samples were standardized to the forward strand 

notation, ensuring alignment with standardized genetic notations. For each SNP, the rsID and 

alleles were validated against the rsID, effect allele, and other allele listed in the SNP reference 

file. Missing values were marked as 'NN' to simplify data processing. Additionally, the order of 

alleles for each SNP was standardized to ensure consistent representation across samples, 

enhancing readability for upcoming analyses. Table 1 describes the allele notations used for 

standardization. These notations represent diploid genotypes, which refer to the pair of alleles 

present at the same locus on homologous chromosomes. Homologous chromosomes contain the 

same genes in the same order but may exhibit allele variation between them. A diploid genotype 

can be homozygous, where both alleles are identical (e.g. AA), or heterozygous, where the 

alleles differ (e.g. AG). As the models are based on the quantity of alleles associated with the 

reference phenotype, the writing order is inconsequential. AG and GA, for instance, are 

equivalent notations. This standardization guarantees consistent representation across datasets. 

Table 1. Replacement dictionary for standardizing genotype notations during preprocessing. 

Original value Standardized value 

--, 0, ?? NN 

GA AG 

GC CG 

TG GT 

TC CT 

TA AT 

CA AC 
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Columns with more than 1/2 to 1/3 missing data were removed to ensure the reliability of 

the analyses and prevent skewing due to excessive missing values. In addition, rows with invalid 

genotypes, missing phenotypes, or excessive missing data (>33% for most traits) were also 

filtered out. 

Since no predefined options were established, users of openSNP were able to freely enter 

any value for their phenotype. Therefore, to minimize variability and avoid duplication, reported 

phenotypes were standardized and categorized into broader classes.  

Model Development and Evaluation 

The data was encoded to allow for machine learning analysis. For most traits, 

homozygotes for the effect allele were encoded as 2, heterozygotes as 1, and homozygotes for 

the other allele as 0. Gender determination used a binary encoding system: SNPs in the SRY 

region were encoded as 1 if present and 0 otherwise. 

Five machine learning models were implemented to predict traits: Logistic Regression, 

Random Forest, Gradient Boosting, Decision Tree, and a Neural Network. For imbalanced 

datasets, weighted sampling was used to distribute the class weights equally. Class weights were 

calculated using the compute_class_weight function from sklearn.utils.class_weight, which 

computes the weights for each class and assigns higher weights to underrepresented classes and 

lower weights to overrepresented ones 36. Class weights were calculated using the formula: 

𝑤𝑖 =
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑖
  

Where 𝑤𝑖 = the weight for class 𝑖, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = the total number of samples,  

𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = the total number of classes, and 𝑛𝑖 = the number of samples in class 𝑖 

Using weighted sampling ensured that each class contributes equally during the model 

training process regardless of its representation in the dataset, helping preserve the overall 
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distribution of genotypes. Alternative balancing techniques, including Synthetic Minority 

Oversampling Technique (SMOTE) and Undersampling, were assessed. However, these yielded 

inferior outcomes in comparison to weighted sampling. A 10-fold stratified Cross-validation was 

used to evaluate the models.  Each model was evaluated based on the F1 scores and accuracy 

metrics. The best-performing model for each trait was selected based on its performance across 

these metrics. 

Section B: Trait-Specific Analysis and Modeling 

I. Biological gender determination 

Biological gender was determined by identifying SNPs located in the SRY (sex-

determining region Y) region on the Y chromosome. This region plays a critical role in 

male differentiation, and the presence of key SNPs within this region indicates a 

biologically male individual. Conversely, the absence of such SNPs confirms a 

biologically female individual. SNPs were selected using the dbSNP, filtering for SNPs 

within the SRY region (see Appendix, B table 12). Four SNPs were included to provide 

alternative options in case of different mapped SNPs. 

Genetic samples and reported gender were obtained from openSNP, resulting in an initial 

dataset of 1016 samples.  

The data was filtered to remove samples from Males that did not have any data associated 

due to incomplete data files (21). In addition, samples with unclear reports of biological 

gender were removed (2). Overall, twenty-three samples were filtered out, yielding a 

dataset of 993 samples – 523 Biological Males and 470 Biological Females.  
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II. Blood type prediction: 

SNP Selection: Blood type prediction was based on 15 SNPs. Originally, 27 SNPs were 

considered, but twelve were excluded due to insufficient data (see Appendix B, table 13). 

Data Collection: Genetic samples and reported blood types were obtained from 

openSNP, resulting in an initial dataset of 868 samples. Data cleaning included the 

removal of columns with over 50% missing data and filtering out users without critical 

SNP data (rs8176719 or rs505922). Since most of the samples were missing data for Rh 

group (+/-) prediction, blood types were standardized into four classes: O, A, B, and AB, 

with 5 users excluded due to unclear reported values. After cleaning and grouping the 

classes, the dataset was reduced to 726 samples. 

Standardization: Genotypes were standardized as described in the Data Pre-Processing 

and Standardization section, using the replacement dictionary provided in Table 1. For 

rs8176719, where the effect allele is a deletion versus insertion, a specific encoding 

technique was used.  

Table 2. Replacement dictionary for standardizing genotype for the SNP rs8176719 

Original Value Standardized Value 

TT DI 

TC II 

CC II 

-C II 

-T DD 

T DD 

C II 

-- NN 

The distribution of blood types within the dataset closely aligned with the global 

distribution (Figure C), which highlights the dataset's diversity and representation of real-

world blood type distribution 37. 
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However, to lessen biases against overrepresented classes, weighted sampling was 

employed. By giving less weight to overrepresented classes and more to underrepresented 

ones, weighted sampling adjusts for class imbalances, ensuring that every class is fairly 

considered by the model, regardless of its representation in the dataset.  

Figure C. Comparison of Blood Type Distribution in the Dataset vs. Global Distribution. 

 

Model Training and Evaluation: Genotypes were encoded as described in section A, 

using O and A blood types as reference classes associated with the "effect allele." Five 

machine learning models were trained on the weighted training set (Table 3): 

Multinomial Logistic Regression, Random Forest, Decision Tree, Gradient Boosting, and 

Neural Network. 

Table 3. Blood Type Model - Original class distribution and Adjusted Class Weights 

Type Original class distribution Adjusted Class Weights 

A 281 0.65 

AB 49 3.70 

B 90 2.02 

O 306 0.59 

Model performance was evaluated using F1 scores and accuracy metrics on a 10-fold 

stratified cross-validation. 
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III. Eye color prediction: 

SNP Selection: Eye color prediction utilized 36 SNPs, predominantly located on 

chromosome 15, a region strongly associated with eye color determination (see Appendix 

B, table 14). Following data cleaning, SNPs with more than one-third of missing 

genotype data were excluded, reducing the set to 22 SNPs.  

Data Collection: Genetic data samples and self-reported eye colors were obtained from 

openSNP. The initial dataset contained 1,805 samples. However, after filtering out 

invalid genotypes and rows with more than one-third of the genotypes missing, 1,441 

samples remained. 

Standardization: Eye colors were self-reported without predefined categories, requiring 

classification into three distinct classes based on the Martin-Schultz Scale 38: 

- Class 1: Blue/Blue Mixed (Martin-Schultz Scale 1–5) 

▪ Class 1 included reported colors such as: “Blue with a yellow ring of flecks that 

make my eyes look green depending on the light or my mood.” and “Ice blue 

mixed with slate blue, with an amber pupil burst in both eyes and a brown spot 

adjacent to lower left pupil. eyes were green into my 20's.”  

- Class 2: Green/Light-Mixed (Martin-Schultz Scale 6–8) 

▪ Class 2 included reported colors such as: “Green with blue halo” and “Green with 

amber burst and gray outer ring.” 

- Class 3: Dark-Mixed/Brown (Martin-Schultz Scale 9–16) 

▪ Class 3 included reported colors such as: “Black” and “Brown-(green when 

external temperature rises).” 

The complete reported eye color classifications can be reviewed in appendix C. 
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Samples with inconsistent or invalid color entries were removed, resulting in a final 

dataset of 1,432 samples. Additionally, since eye colors are highly complex and not 

always distinct, two subsets were created, one comparing only brown and blue eye colors 

and another comparing blue and green eye colors.  

Class Distributions: 

- Dark-Mixed/Brown: 713 

- Blue/Blue-Mixed: 517 

- Green/Light-Mixed: 202 

Model Training and Evaluation: three models were created: (1) A model containing all 

three color-classes (BuGrBr model), (2) Blue/Blue-Mixed vs. Green/Light-Mixed (Bu/Gr 

model), and (3) Blue/Blue-Mixed vs Dark Mixed/Brown (Bu/Br model). with the Bu/Br 

model being executed first.  

Results from the two eye color models (Bu/Gr and Bu/Br) are meant to be integrated as 

follows: 

1. If the result from the Bu/Br model is “Dark Mixed/Brown”, the prediction is “Dark 

Mixed/Brown” regardless of the Bu/Gr model’s results. 

2. If the result is “Blue/Blue-Mixed” in both models, the prediction is “Blue/Blue-

Mixed.” 

3. If the result is “Blue/Blue-Mixed” in the Bu/Br model and “Green/Light-Mixed” in the 

Bu/Gr model, the prediction should be “Blue or Green.” 

Figure D below provides a visual outline of the process of eye color prediction.  
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Figure D. Eye Color Prediction Flowchart 

 

Genotypes were standardized as described in section A. The dataset with all three classes 

was encoded with reference to the darker color, as it is often more dominant. Similarly, 

the blue and brown subset was encoded with reference to brown. However, the Green vs. 

Blue subset was encoded with reference to blue, as green phenotypes are more complex 

and often consist of a mixture of several colors. In addition, just ~2% of people 

worldwide have green eyes, making them extremely rare 39. Weighted sampling was used 

to address imbalances between classes (Table 4), assigning higher weights to 

underrepresented classes.  

Table 4.  Eye Color Models - Original class distribution and Adjusted Class Weights 

Model set Original class distribution Adjusted class weights 

3-color classes set Blue/Blue-Mixed: 517 

Dark Mixed/Brown: 713 

Green/Light-Mixed: 202 

Blue/Blue-Mixed: 0.92 

Dark Mixed/Brown: 0.67 

Green/Light-Mixed: 2.36 

Blue vs. Green subset Blue/Blue-Mixed: 517 

Green/Light-Mixed: 202 

Blue/Blue-Mixed: 0.70 

Green/Light-Mixed: 1.78 

Blue vs. Brown subset Blue/Blue-Mixed: 517 

Dark Mixed/Brown: 713 

Blue/Blue-Mixed: 1.19 

Dark Mixed/Brown: 0.86 
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Five machine learning models were trained and evaluated: Multinomial Logistic 

Regression, Random Forest, Gradient Boosting, Decision Tree, and Neural Network. 

Performance was assessed using F1 scores, and accuracy metrics for a 10-fold stratified 

cross-validation. 

IV. Hair Color Prediction 

Hair color prediction was initially divided into two parts, with the first focusing on the 

classification of red hair versus non-red hair. This is due to the specific genes associated 

with red hair. 

Red vs. Non-Red Hair:  

SNP Selection: Thirteen SNPs associated with red hair were selected for this analysis 

(see Appendix B, table 15). 

Data Collection: Samples were obtained from openSNP, including genotype data and 

user reported phenotypes. 

Standardization: The data was cleaned and standardized as described in section A. 

Invalid genotypes and rows with more than 50% missing data were removed. Overall, 32 

samples were removed from the dataset, making the final sample size 160. 

User-reported responses regarding red hair were standardized into two categories: (1) Yes 

and (2) No, ensuring consistency in phenotype reporting. 

The distribution of red versus non-red hair in the dataset was as follows: 

• Red Hair (Yes): 49 samples 

• Non-Red Hair (No): 111 samples 



21 

Model Training and Evaluation: Genotypes were encoded as described in the Data Pre-

Processing and Standardization sub-chapter, with the "effect allele" representing red hair. 

Weighted sampling was applied to address class imbalances during training (Table 5).  

Table 5. Red Hair Color Model - Original class distribution and Adjusted Class Weights 

Red presence Original class distribution Adjusted class weights 

No 111 0.72 

Yes 49 1.63 

Five machine learning models were trained and evaluated: Multinomial Logistic 

Regression, Random Forest, Decision Tree, Gradient Boosting, and Neural Network. 

Performance was evaluated using F1 scores and accuracy metrics using a stratified 10-

fold cross-validation. 

Brown vs. Blonde Hair: 

SNP Selection: Forty-five SNPs associated with hair color were initially selected, 

including many that are linked to key genes such as MC1R, one of the most studied genes 

associated with hair color 40. After filtering SNPs with more than one-third of the data 

missing, 40 SNPs were retained (see Appendix B, table 16). 

Data Collection: Genetic samples and reported phenotypes were obtained from 

openSNP, yielding an initial dataset of 1178 samples. Rows with invalid genotypes, 

incomplete phenotype reporting, or more than one-third of missing genotype data were 

filtered out. Red-haired individuals’ samples were excluded from this analysis. Overall, 

70 rows were excluded from the dataset, yielding a final sample size of 1066. 
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Standardization: The dataset was standardized as described in Section A. User-reported 

hair colors were not pre-set to specific categories, resulting in many diverse descriptors. 

To address this, colors were grouped into two broad categories: (1) Brown to Dark 

Brown/Black, and (2) Blonde to Dark Blonde 

Class Distribution: 

- Brown to Dark Brown/Black: 874 samples 

▪ This class included reported colors such as: “Black” and “Brown going to white 

in early 40s” 

- Blonde to Dark Blonde: 192 samples 

▪ This class included reported colors such as: “Blond as a child. dark blond as an 

adult.” and “Dishwater blonde” 

The complete reported hair color classifications can be reviewed in appendix C. 

Model Training and Evaluation: Genotypes were encoded using the "effect allele," 

with lighter hair (blonde) as the reference class. Weighted sampling was applied during 

model training to address the class imbalance and ensure fair representation of both hair 

color categories (Table 6). 

Table 6. Hair Color Model - Original class distribution and Adjusted Class Weights 

Hair Color Original class distribution Adjusted class weights 

Blonde to Dark Blonde 192 2.78 

Brown to Dark Brown/Black 874 0.61 

Five machine learning models were trained and evaluated: Multinomial Logistic 

Regression, Random Forest, Decision Tree, and Gradient Boosting. Model performance 

was evaluated on a 10-fold stratified cross-validation, using F1 scores and accuracy 

metrics. 
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Prediction order of Red vs. Blonde/Brown hair colors: 

Red hair is determined first via the red_hair model, followed by the hair_color model for 

blond vs. brown predictions: 

1. If the red hair result is “non-red,” the prediction for red hair should be “Red hair 

color is unlikely” and the hair_color model result is the determining one. 

2. If the red_hair model’s result is “Yes” and the hair_color model predicts Blonde to 

Dark Blonde, the prediction for red hair should be “Red Hair – High Likelihood” and 

the prediction for hair color should be “Red or Light hair color” 

3. If the red hair result is “Yes” and the hair_color model predicts Brown to Dark 

Brown/Black, the prediction for red should be “Red – Moderate likelihood for a red 

undertone or red highlights,” and the prediction for hair color should be “Brown to 

Dark Brown/Black, with a possibility for some red”  

Figure E below provides a visual outline of the process for hair color prediction. 

Figure E. Hair Color Prediction Flowchart 
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V. Ancestry Prediction: 

SNP Selection: Ancestry prediction was based on an initial set of 169 SNPs. After 

cleaning and standardization, 164 SNPs were retained for analysis. The selection process 

focused on SNPs with the highest potential to distinguish populations based on their 

alternative allele frequencies across these groups. Using the ALFA database, allele 

frequency data across three major populations was obtained: African, Asian, and 

European. This enabled the identification of SNPs that exhibit significant frequency 

differences between populations. Figure B illustrates the distribution of alternative allele 

frequencies for selected SNPs across major populations (African, Asian, and European). 

This radar plot illustrates the differences in allele frequencies, which was used to select 

SNPs that maximize genetic distance. 

Figure F. ALFA frequency distributions for the alternative allele across major 

populations (African, Asian, and European) for selected SNPs. 
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Data Collection: Genetic data was obtained from three publicly available resources: the 

1000 Genomes Project, Simons Genome Diversity Project (SGDP), and Human Genome 

Diversity Project (HGDP). The dataset consisted of 4221 samples, each containing 

sample ID, genotype information, group (broad population category such as America and 

Central-South Asia), and population (specific country or region such as Colombia and 

Pakistan - Balochi). To address the high specificity of the population column, a new 

column called subgroup was added. Subgroup classifications were intermediate, 

reflecting more specificity than the broad group but less than the population column (for 

example, Central and South America and South Asia). Subgroups were assigned based on 

the population column, considering geographic and genetic similarities.  

Standardization: The dataset was standardized as described in Section A. SNP columns 

with more than one-third of the missing data were removed, resulting in the removal of 5 

SNPs. Rows with more than one-third of missing genotype data were also removed. 

Overall, 394 samples were removed, yielding a dataset of 3827 samples. 

The class distribution within subgroups was as follows: 

Subgroup count 

African 1030 

East Asia and China 909 

European 688 

South Asian 583 

Central and South American 277 

Middle East 163 

Native Americans 86 

Northeast Asia and Siberia 42 

Oceania 30 

Eastern European and West Eurasia 19 
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To evaluate the genetic distinction among subgroups, the Euclidean distance was 

calculated, as it was found to approximately reflect genetic relationships between 

populations 41. The Euclidean distance is a measure of the straight-line distance between 

two points. In the context of this study, the genetic distance was calculated based on the 

difference in pairwise allele proportions between subgroups. The proportions referred to 

are the proportions of each pairwise allele combination within a subgroup compared to 

the other combinations within that subgroup. The difference in proportions was 

calculated for each SNP and squared to avoid negative values. The squared values across 

all SNPs were then summed and the square root of this sum was taken to produce a single 

distance value, which represents the genetic difference between two subgroups.   

Distances were computed using the following formula 42: 

𝛿𝐴𝐵 = {∑ (𝑥𝐴𝑖 − 𝑥𝐵𝑖)𝑖
2

}
(

1

2
)
                           [𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝐴]41     

Where 𝐴 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝐴, 𝐵 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝐵, and 𝑥𝐴𝑖 and 𝑥𝐵𝑖 

are the proportions of pairwise allele combinations for SNP 𝑖 of two different subgroups. 

Calculation example for two SNPs (rs10079352 and rs10145636) between African and 

Central and South American subgroups:  

rsid   Allele combinations African Central and South American 

rs10079352 

AA (%) 81.826 19.134 

AG (%) 9.043 47.292 

GG (%) 9.131 33.574 

NN (%) 0 0 

rs10145636 

AA (%) 52.766 29.964 

AG (%) 40.035 47.653 

GG (%) 7.112 22.383 

NN (%) 0.0878 0 

The first step was to convert the percentages into proportions: 

𝑎𝑙𝑙𝑒𝑙𝑒𝑠 𝑆𝑁𝑃%

100
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Next, the squared difference between the proportions of pairwise alleles was calculated: 

(rs10079352Afr(AA) − rs10079352centamerica(AA))
2
 

rsid Allele combinations Squared difference 

rs10079352 

AA 0.393 

AG 0.146 

GG 0.060 

NN 0.000 

rs10145636 

AA 0.052 

AG 0.006 

GG 0.023 

NN 0.000 

Then based on Formula A above, the square root of the sum of all distances was taken to 

generate the distance between the two population subgroups: 

𝛿𝐴𝑓𝑟,𝑐𝑒𝑛𝑡𝑎𝑚𝑒𝑟𝑖𝑐𝑎 = √0.680 = 0.825 

This calculation method was applied to all SNPs via Python, using SciPy’s pdist 43. 

Using the calculated distance matrix, a dendrogram was generated to visually represent 

the relationships between subgroups based on genetic similarity (Figure G). 

Figure G. Dendrogram of the hierarchical relationship between population classes based on the 

Euclidean distance between them. 
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Model Training and Evaluation: Alleles were encoded as described in Section A, with 

encoding based on the alternative allele. Weighted sampling was applied during model 

training to address the class imbalances (Table 7).  

Table 7. Ancestry Model - Original class distribution and Adjusted Class Weights 

Subgroup Original class distribution Adjusted class weights 

Africa 1139 0.34 

Central and South America 277 1.38 

East Asia and China 800 0.48 

Eastern Europe and West Eurasia 19 20.14 

Europe 688 0.56 

Middle East 163 2.35 

Native Americans 85 4.50 

Northeast Asia and Siberia 43 8.90 

Oceania 30 12.76 

South Asia 583 0.66 

Five machine learning models were trained and evaluated, Logistic Regression, Random 

Forest, Gradient Boosting, Neural Network (MLP) and Decision Tree Classifier. 

Model evaluation was done using 10-fold stratified cross-validation. The models were 

assessed based on F1 scores and accuracy metrics.  
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Chapter 5: Analysis and Discussion 

The overall goal of this study was to measure the feasibility of developing a private, 

secure, and user-friendly computational framework for genetic analysis. This research 

concentrated on predicting observable traits, including ancestry, hair color, eye color, blood type, 

and biological gender, based on genetic data by utilizing genome-wide association studies 

(GWAS) and single nucleotide polymorphisms (SNPs). The results of this research demonstrated 

the potential for accurately linking genetic variations to phenotypic traits. In this chapter, I 

analyze the results of the predictive model developed for each trait, examine their implications, 

and discuss the context and challenges of genetic analysis. 

I. Biological gender:  

Biological gender prediction relied on identifying the presence or absence of SNPs 

located on the Y chromosome, particularly within the SRY (Sex-Determining Region Y) gene. 

The SRY gene is a reliable genetic marker for distinguishing biological males from biological 

females. This straightforward approach uses the genetic basis of gender determination, as the 

presence of the SRY gene is enough to classify an individual as male biologically. 

The model's performance was evaluated, yielding an impressive F1 score and accuracy of 

0.99, as shown in the classification report below. 

Table 8. Classification report for the biological gender prediction model. 

 
Precision Recall F1-Score Support 

Female Biologically 1.00 0.98 0.99 470 

Male Biologically 0.98 1.00 0.99 523 

Macro avg 0.99 0.99 0.99 993 

Weighted avg 0.99 0.99 0.99 993 

Accuracy 0.99   993 
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Figure H. Confusion Matrix for Gender Prediction Model. 

 

Upon reviewing the eight misclassified results, the following observations were made: 

1. Three samples had discrepancies between their predicted gender and their reported biological 

gender, suggesting that the gender may have been incorrectly reported. 

2. Five samples were reported as female but were misclassified as male due to the presence of a 

single allele associated with the Y chromosome. This anomaly might require further 

investigation to understand why these alleles are present in individuals classified as female. 

Despite these minor discrepancies, the model demonstrated exceptional predictive power, 

with a 99% accuracy. Its simplicity, relying on just five SNPs from the SRY region, shows 

the power of using well-defined genetic markers for phenotype predictions. Future research 

could focus on exploring the causes of misclassifications and include markers that can 

predict disorders of sex development. 
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II. Blood Type Prediction 

The prediction of blood types was approached using a machine learning model based on 

15 SNPs identified as markers for ABO blood types. Blood type is determined by a single gene 

with a classic dominant-recessive inheritance pattern, where the O blood type is typically 

recessive. Among the selected SNPs, rs8176719 and rs505922 were set as required for 

prediction, as they play an important role in distinguishing O types from non-O types 44,45. These 

SNPs specifically target the insertion/deletion polymorphism (rs8176719) in the ABO gene, 

which is key to determining whether an individual carries the O allele. 

The dataset used for this study replicated real-world blood type distributions, indicating 

that the samples were representative of the broader population. For instance, O blood type 

accounted for 42% of the dataset, closely matching its global prevalence of approximately 45%. 

This representativeness ensures the model's applicability to diverse populations. However, the 

lack of data for Rh group prediction (+/-) limited the model's scope to ABO types only. 

Incorporating Rh-related SNPs in future datasets could expand the model’s predictive 

capabilities to include Rh prediction. 

All models evaluated during the study demonstrated high predictive capabilities, with F1 

scores and accuracy metrics exceeding 94% on a 10-fold stratified cross-validation. Gradient 

Boosting was selected as the best-performing model due to its slightly better performance 

compared to other models. The Gradient Boosting model's classification report (Table 4) 

highlights its strong performance across all blood types. 
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Table 9. Gradient Boosting classification report for ABO blood type prediction. 

Blood Type Precision Recall F1-Score Support 

A 0.95 0.95 0.96 281 

AB 0.93 0.84 0.88 49 

B 0.94 0.97 0.95 90 

O 0.97 0.98 0.97 306 

Macro avg 0.95 0.93 0.94 726 

Weighted avg 0.96 0.96 0.96 726 

Accuracy 0.96   726 

Figure I. Confusion matrix for Gradient Boosting model in blood type prediction. 

 

The highest precision and recall scores were observed for the O blood type. This is 

largely due to its straightforward genetic determination by the rs8176719 deletion/insertion 

polymorphism, which provides a clear distinction between O and non-O blood types. In contrast, 

the AB blood type showed the lowest precision and recall. This was somewhat expected, as AB 

is a combination of the A and B alleles, introducing additional genetic complexity that makes 
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accurate classification more challenging. As we can see from the confusion matrix, the model 

showed some discrepancies between A and AB and B and AB types. Despite this complexity, the 

model's performance for AB still performed relatively well, with an F1 score of 0.87. These 

results suggest that while distinguishing AB from other types may be more complex, the model 

still captures the genetic interactions that are needed for prediction.  

While the current model is effective for predicting ABO blood types, its scope could be 

expanded to include Rh group prediction. Integrating RhD-related SNPs into the dataset would 

allow for a more comprehensive blood typing model, which could be invaluable for clinical and 

forensic applications. Additionally, further refinements could be made to improve the 

classification of the AB blood type, perhaps by incorporating additional SNPs associated with 

glycosyltransferase activity in the ABO gene. 

III. Eye color prediction 

Eye color prediction proved to be one of the most complex traits to model due to the highly 

polygenic nature of this trait. Eye color is influenced by many genes, many of which interact 

with each other in complex ways to produce the spectrum of colors we see in eyes. This makes 

lighter and intermediate eye colors, such as green, particularly challenging to predict accurately. 

To account for this, three approaches were implemented: (1) prediction using a full dataset 

containing three classes (Blue/Blue-Mixed, Green/Light-Mixed, and Dark Mixed/Brown), (2) a 

subset comparing Blue/Blue-Mixed vs. Green/Light-Mixed, and (3) a subset comparing 

Blue/Blue-Mixed vs. Dark Mixed/Brown. 

The Gradient Boosting model was selected for the three-class dataset due to its overall 

performance across the classes. The classification report (Table 5) illustrates the model's ability 

to distinguish between the three-color groups. 
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Table 10. Gradient Boosting classification report for three-class eye color predictions. 

Eye Color Precision Recall F1-Score Support 

Blue/Blue-Mixed 0.72 0.90 0.80 517 

Dark Mixed/Brown 0.87 0.90 0.88 713 

Green/Light-Mixed 0.26 0.05 0.08 202 

Macro avg 0.61 0.62 0.59 1432 

Weighted avg 0.73 0.78 0.74 1432 

Accuracy 0.78 
 

 1432 

Figure J. Confusion matrix for Gradient Boosting model in eye color prediction. 

 

The model performed well for Dark Mixed/Brown eye colors, with an F1 score of 0.88, 

and relatively well for Blue/Blue-Mixed, with an F1 score of 0.80. However, it struggled to 

predict Green/Light-Mixed eyes, with an F1 score of only 0.07. This poor performance 

highlights the difficulty in distinguishing intermediate colors such as green and hazel, which are 

influenced by a complex combination of genes. While other models, such as MLR (F1 = 0.31) 

and Decision Tree (F1 = 0.24), performed slightly better for the Green/Light-Mixed group, 
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Gradient Boosting was ultimately selected due to its better performance for the other two groups. 

Nevertheless, the overall limitations of the three-class model are substantial, and its application 

should be considered carefully.  

To refine the prediction, two subset models were created: (1) Blue/Blue-Mixed vs. 

Green/Light-Mixed (Bu/Gr model), and (2) Blue/Blue-Mixed vs Dark Mixed/Brown (Bu/Br 

model). This modeling process was designed to predict traits sequentially, intending to improve 

the model's ability to distinguish between colors.  

The Gradient Boosting model performed relatively well for blue and brown eyes on both 

subsets (Tables 6-7). However, in the Bu/Gr model, the model still struggled with distinguishing 

the Green/Light-Mixed group from Blue/Blue-Mixed, with an F1 score of 0.44. This can be due 

to the very nuanced genetics related to intermediate colors such as green and hazel, which are 

often a combination between lighter color genes and darker ones that create those colors. As a 

result, the prediction of Blue/Blue-Mixed also had an F1 score that is lower (0.85) than that of 

the Bu/Br model (0.91). The Bu/Br model achieved high performance, with F1 scores of 0.91 for 

Blue/Blue-Mixed and 0.93 for Dark Mixed/Brown. 

Table 11. Gradient Boosting classification report for Blue/Blue-Mixed vs. Green/Light-Mixed 

eye color predictions. 

Eye Color Precision Recall F1-Score Support 

Blue/Blue-Mixed 0.78 0.93 0.85 517 

Green/Light-Mixed 0.64 0.33 0.44 202 

Macro avg 0.71 0.63 0.64 719 

Weighted avg 0.74 0.76 0.73 719 

Accuracy 0.76 
 

 719 
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Figure K. Confusion matrix for Gradient Boosting model in Blue vs. Green eye color prediction. 

 

Table 12. Gradient Boosting classification report for Blue/Blue-Mixed vs. Dark-Mixed/Brown 

eye color predictions. 

Eye Color Precision Recall F1-Score Support 

Blue/Blue-Mixed 0.90 0.92 0.91 517 

Dark Mixed/Brown 0.94 0.92 0.93 713 

Macro avg 0.92 0.92 0.92 1230 

Weighted avg 0.92 0.92 0.92 1230 

Accuracy 0.92 
 

 1230 

Figure L. Confusion matrix for Gradient Boosting model – Blue vs. Brown eye color prediction. 

 



37 

The absence of intermediate colors in this subset allowed the model to distinguish the 

genetic differences between the two groups more effectively. This highlights the importance of 

simplifying classification problems when dealing with traits influenced by complex genetic 

interactions. 

One significant limitation of this study was the inconsistency in user-reported eye colors 

within the dataset. Since users were allowed to enter any value, the data included diverse and 

sometimes ambiguous descriptors, such as "black," which is not a naturally occurring eye color 

in humans 46. Additionally, the lack of empirical measurement for eye color (using a validated 

scale or spectrophotometer) may have introduced biases based on the user’s perception. Future 

studies could address this limitation by collecting more controlled and validated datasets, 

ensuring consistent reporting of eye colors. 

Despite these challenges, the Gradient Boosting model demonstrated strong predictive 

performance for the Dark vs. Light subset, which shows the potential for machine learning to 

model complex traits such as eye color. However, it also highlights the importance of consistent 

data collection and preprocessing techniques to reduce biases and resulting errors. 

IV. Hair color prediction: 

Hair color prediction was divided into two distinct models: (1) red vs. non-red hair and 

(2) light hair (blonde) vs. dark hair (brown/black). This division was necessary due to the distinct 

genetics and biochemical processes underlying these traits. Red hair is determined by the 

presence of pheomelanin, a red/yellow pigment, while the lightness or darkness of hair depends 

on the level of eumelanin, a brown/black pigment. Given that different SNPs are involved in 

regulating these pigments, separate models were necessary for accurate predictions. 
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Red vs. Non-Red Hair Color Prediction 

For red vs. non-red hair, Gradient Boosting was selected as the best-performing model, achieving 

high accuracy and balanced performance across both categories. 

Table 13. Gradient Boosting classification report for red vs. non-red hair color prediction. 

Hair Color Precision Recall F1-Score Support 

No (non-red) 0.91 0.96 0.93 111 

Yes (Red) 0.90 0.78 0.84 49 

Macro avg 0.91 0.87 0.89 160 

Weighted avg 0.91 0.90 0.92 160 

Accuracy 0.91   160 

Figure M. Confusion matrix for Gradient Boosting model – red vs. non-red hair color 

prediction. 

 

The model achieved strong performance in predicting non-red hair, with an F1 score of 

0.93. For red hair, the F1 score was slightly lower at 0.84. While weighted sampling was applied 

to address class imbalances, the rarity of red hair and limited genotypes in the sample still caused 

challenges for the model. Still, the model demonstrated strong overall accuracy at 91%, showing 

good capability to reliably distinguish between red and non-red hair colors. 
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Light vs. Dark Hair Color Prediction 

The second model focused on distinguishing between light hair (blonde to dark blonde) 

and dark hair (brown to dark brown/black). Gradient Boosting was the selected model, as it 

showed high predictive power for darker colors. For lighter hair colors, performance across all 

models was significantly lower, with an F1 score of 0.39 for the Gradient Boosting model. While 

MLR slightly outperformed Gradient Boosting for the lighter class (F1 = 0.52 vs. 0.39), Gradient 

Boosting was chosen due to its superior performance for darker hair, which comprised most of 

the dataset. 

Table 14. Gradient Boosting classification report for light vs. dark hair color prediction. 

Hair Color Precision Recall F1-Score Support 

Blonde to Dark Blonde 0.55 0.31 0.39 192 

Brown to Dark Brown/Black 0.86 0.95 0.90 874 

Macro avg 0.71 0.63 0.65 1066 

Weighted avg 0.80 0.83 0.81 1066 

Accuracy 0.83   1066 

Figure N. Confusion matrix for Gradient Boosting model - light vs. dark hair color prediction. 
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Similarly to eye-color, the most significant limitations in hair color prediction was the 

variability in user-reported data. Even more than eye colors, reported hair colors in the dataset 

were highly diverse, with descriptions ranging from "Grey and brown" to "Strawberry blonde as 

a child, now dark auburn brown." This variability made it challenging to group the data into 

consistent and meaningful categories. Furthermore, it is very likely that subjective reporting and 

differences in individual perception introduced errors into the dataset. 

Another limitation was the overlap between certain hair colors, such as light brown and 

dark blonde. These colors are often difficult to differentiate without precise measurement tools, 

leading to potential misclassification. To address this issue in future studies, hair pigmentation 

should be measured using a standardized scale, such as spectrophotometric color analysis, which 

provides objective and quantifiable data on hair pigmentation. 

Despite these challenges, the Gradient Boosting model demonstrated good performance 

for darker hair colors and red hair, showing high potential for predicting certain phenotypes. 

However, further refinement of the dataset and color measurement techniques is needed to 

improve prediction accuracy for lighter and intermediate hair colors. 

V. Ancestry prediction 

Ancestry prediction relies on genetic markers capable of distinguishing population groups 

based on their unique allele frequency distributions. For this model, the SNPs were selected 

based on their ability to maximize genetic distance between populations.  

For ancestry prediction, the Neural Network (MLP) model was the top-performing 

model, with an accuracy of 96% and an F1 score of 0.96 across 10-fold stratified cross-

validation.  
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Table 15. Classification report for ancestry prediction using the Neural Network (MLP) model. 

 precision recall f1-score support 

African 0.99 1.00 1.00 1030 

Central and South American 0.92 0.90 0.91 277 

East Asia and China 0.97 0.99 0.98 909 

Eastern European and West Eurasia 0.29 0.11 0.15 19 

European 0.95 0.98 0.97 688 

Middle East 0.84 0.85 0.84 163 

Native Americans 0.96 0.92 0.94 86 

Northeast Asia and Siberia 0.96 0.55 0.70 42 

Oceania 0.97 0.97 0.97 30 

South Asian 0.95 0.96 0.96 583 

Macro avg 0.849 0.810 0.824 3827 

Weighted avg 0.956 0.958 0.956 3827 

Accuracy 0.96   3827 

Figure O. Confusion matrix for MLP Model in ancestry prediction. 
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The classification report (Table 10) reveals consistently high precision and recall for most 

subgroups, particularly for African (F1 = 1.00), East Asia and China (F1 = 0.98), European (F1 = 

0.97), and South Asian (F1 = 0.96) populations. However, the model struggled with smaller and 

less genetically distinct groups, such as Eastern European and West Eurasian (F1 = 0.15) and 

Northeast Asia and Siberia (F1 = 0.70). This low prediction capabilities may be due to the small 

sample sizes and genetic overlap with neighboring populations. While weighted sampling was 

used to reduce the model’s biases towards overrepresented populations, the number of samples 

remains low and might not reflect genetic diversity well. In addition, the similarity between 

population as a result of migration patterns and common ancestors might force these groups to be 

merged into other population groups based on their genetic proximity.  

The dendrogram (Figure C) shows that clusters align with geographical and genetic 

proximities. For example, African populations were distinctly clustered, reflecting their 

significant genetic distance from non-African populations, consistent with human migration 

patterns. Smaller subgroups, such as Northeast Asia and Siberia, appeared closely linked to East 

Asia and China, indicating genetic similarities despite their geographic locations. 

It is worth investigating whether the current subgroup classifications can be refined. One 

possible approach is to classify populations into subgroups based on migration patterns rather 

than genetic distances. Additionally, merging subgroups with very small sample sizes or 

incorporating additional SNPs with greater distances from other populations might improve 

model performance for these groups. 

While the model achieved excellent overall performance, the SNP selection process could 

be further refined to include markers with higher discriminatory power and reassess current 

markers that do not contribute to the model. A deeper review of allele frequency distributions 

and their potential for distinguishing specific populations from each other could help resolve 

some of the current limitations. 
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Chapter 6: Conclusions 

The field of genomics has seen tremendous growth in the past decade, but many existing 

genetic analysis platforms remain limited in their scope and usability. Current tools, such as 

23andMe and Promethease fall short in addressing critical issues such as data privacy and 

security, ease of use, and broader applicability beyond consumer contexts. This research aimed 

to address these issues by creating a framework that would enable a locally run genetic analysis 

that can be modified and customized to meet the unique requirements of different sectors. While 

the initial focus was on traits such as biological gender, blood type, and eye and hair color, the 

framework is flexible and can be adapted to incorporate various traits, making it applicable to 

different contexts, such as healthcare, pharmacogenomics, and nutrition. 

Throughout this study, several challenges emerged, indicating areas for future 

improvements and research. One of the primary challenges was the inherent complexity of 

predicting less common phenotypes, such as green eye color or red hair. Such phenotypes are 

often underrepresented in the dataset. While this can be corrected using methods such as 

weighted sampling or oversampling, there is still an issue with diversity within those groups. As 

a result, while they share a trait, the small sample size might not be representative of the general 

population. 

Another challenge that arose was the lack of sufficient data from certain population 

groups in the ancestry dataset. This issue not only restricts the inclusivity of the framework but 

also raises ethical concerns. as populations with limited representation in genetic research can 

have disadvantages in healthcare, genetic disease discovery, and treatment options. This 

highlights the importance of improving the representation of diverse populations in genetic 
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datasets, not only for predictive purposes, but also to ensure that genetic diversity is preserved 

across all research domains.  

Another notable limitation was the inconsistency in user-reported traits, such as eye and 

hair color, which varied widely in description and were subjected to personal biases. 

Standardizing trait reporting and employing objective measurement techniques, such as 

spectrophotometric analysis for color predictions, could help minimize these issues and enhance 

the reliability of genetic predictions. 

Yet, despite these limitations, the framework allowed for the generation of models with 

strong predictive capabilities across most categories, supporting its feasibility as a private, 

secure, and broadly applicable genetic analysis platform. Additionally, another finding that 

emerged during the research was the strong performance of the Gradient Boosting model for 

predictive genetics. While some additional research might be required, Gradient Boosting 

consistently performed well across most trait predictions, including more complex traits like eye 

and hair color, indicating that it can potentially be used as a “default” model for predicting 

phenotypes from genotypes.  

Importantly, the framework proposed in this study is adaptable for various industries, 

from healthcare to personalized nutrition and ancestry research, by refining the data collected 

and expanding the scope of traits analyzed. The findings of this research contribute to the 

broader body of knowledge by illustrating a clear pathway for developing ethical, private, and 

practical genetic analysis platforms; it introduces methods for predictive genetic analysis, which 

demonstrate high capability and applicability; and it shows the high predictive power of models 

such as Gradient Boosting for simple and complex phenotype predictions.  
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In conclusion, while additional research is still necessary, this study successfully 

demonstrated the practicality of a novel framework for a genetic analysis tool that emphasizes 

privacy, security, and usability, setting it apart from existing platforms. Furthermore, the 

framework’s adaptability enables it to be customized or expanded to address more specific or 

complex trait analyses, making it a valuable foundation for future research. By addressing 

current limitations and continuing to refine the methodology, this framework has the potential to 

make genetic analysis a more inclusive, ethical, and impactful domain. Future work could 

explore incorporating PCA for dimensionality reduction, which may enhance the framework by 

improving computational efficiency and focusing on the most significant genetic features. 

 



46 

References 

(1) 15 Ways Genomics Influences Our World. https://www.genome.gov/dna-day/15-ways (accessed 

2024-11-27). 

(2) Allyse, M. A.; Robinson, D. H.; Ferber, M. J.; Sharp, R. R. Direct-to-Consumer Testing 2.0: 

Emerging Models of Direct-to-Consumer Genetic Testing. Mayo Clin. Proc. 2018, 93 (1), 113–120. 

https://doi.org/10.1016/j.mayocp.2017.11.001. 

(3) 23andMe. DNA Genetic Testing For Health, Ancestry And More - 23andMe. 

https://www.23andme.com/ (accessed 2024-12-14). 

(4) Ancestry® | Family Tree, Genealogy & Family History Records. 

https://www.ancestry.com/?o_xid=115784&o_lid=115784&o_sch=Paid+Search+Brand&ancid=4v

mopenrg0&ds_rl=1286410&pgrid=120522386862&ptaid=kwd-

29052520&s_kwcid=ancestry&gad_source=1&gclid=Cj0KCQiA0--

6BhCBARIsADYqyL8sLbqObHkRsS9jfDJv0UkBnlWmWdPoK8HjRN2zywKStvKVEDINIMIaA

px1EALw_wcB&gclsrc=aw.ds (accessed 2024-12-14). 

(5) Free Family Tree, Genealogy, Family History, and DNA Testing. MyHeritage. 

https://www.myheritage.com (accessed 2024-12-14). 

(6) Promethease. https://promethease.com/ (accessed 2024-12-14). 

(7) Watson, B. Promethease and Xcode Life health reports: How to choose 23andme raw data health 

reports [2023 Update]. Xcode Life. https://www.xcode.life/23andme-raw-data/promethease-xcode-

life-23andme-raw-data-analysis-health-reports/ (accessed 2024-11-27). 

(8) Nelson, S. C.; Bowen, D. J.; Fullerton, S. M. Third-Party Genetic Interpretation Tools: A Mixed-

Methods Study of Consumer Motivation and Behavior. Am. J. Hum. Genet. 2019, 105 (1), 122–131. 

https://doi.org/10.1016/j.ajhg.2019.05.014. 

(9) Promethease Review: Everything You Need To Know - LifeDNA. https://lifedna.com/dna-

blog/promethease-review-everything-you-need-to-know/ (accessed 2024-11-19). 

(10) DeGeurin, M. Hackers Got Nearly 7 Million People’s Data from 23andMe. The Firm Blamed Users 

in ‘Very Dumb’ Move. The Guardian. February 15, 2024. 

https://www.theguardian.com/technology/2024/feb/15/23andme-hack-data-genetic-data-selling-

response (accessed 2024-11-24). 

(11) MyHeritage Acquires Promethease and SNPedia. 

https://www.businesswire.com/news/home/20190907005012/en/MyHeritage-Acquires-

Promethease-and-SNPedia (accessed 2024-11-24). 



47 

(12) Skwarecki, B. If You Ever Used Promethease, Your DNA Data Might Be on MyHeritage Now. 

Lifehacker. https://lifehacker.com/if-you-ever-used-promethease-your-dna-data-might-be-on-

1841327595 (accessed 2024-11-24). 

(13) Allyn, B. 23andMe Is on the Brink. What Happens to All Its DNA Data? NPR. October 3, 2024. 

https://www.npr.org/2024/10/03/g-s1-25795/23andme-data-genetic-dna-privacy (accessed 2024-11-

24). 

(14) Enright, M. Inside the fall of 23andMe. CNBC. https://www.cnbc.com/2024/10/23/inside-the-fall-

of-23andme.html (accessed 2024-11-24). 

(15) GWAS Catalog. https://www.ebi.ac.uk/gwas/efotraits/EFO_0003924 (accessed 2024-11-09). 

(16) rs9463733 RefSNP Report - dbSNP - NCBI. https://www.ncbi.nlm.nih.gov/snp/rs9463733 (accessed 

2024-11-14). 

(17) 1000 Genomes | A Deep Catalog of Human Genetic Variation. 

https://www.internationalgenome.org/home (accessed 2024-11-27). 

(18) 23andMe. 23andMe - Genetics 101: What are SNPs? https://www.23andme.com/gen101/snps/ 

(accessed 2024-11-27). 

(19) Rahim, N. G.; Harismendy, O.; Topol, E. J.; Frazer, K. A. Genetic Determinants of Phenotypic 

Diversity in Humans. Genome Biol. 2008, 9 (4), 215. https://doi.org/10.1186/gb-2008-9-4-215. 

(20) Jajosky, R. P.; Wu, S.-C.; Zheng, L.; Jajosky, A. N.; Jajosky, P. G.; Josephson, C. D.; Hollenhorst, 

M. A.; Sackstein, R.; Cummings, R. D.; Arthur, C. M.; Stowell, S. R. ABO Blood Group Antigens 

and Differential Glycan Expression: Perspective on the Evolution of Common Human Enzyme 

Deficiencies. iScience 2022, 26 (1), 105798. https://doi.org/10.1016/j.isci.2022.105798. 

(21) Groot, H. E.; Villegas Sierra, L. E.; Said, M. A.; Lipsic, E.; Karper, J. C.; van der Harst, P. 

Genetically Determined ABO Blood Group and Its Associations With Health and Disease. 

Arterioscler. Thromb. Vasc. Biol. 2020, 40 (3), 830–838. 

https://doi.org/10.1161/ATVBAHA.119.313658. 

(22) Flegel, W. A. The Genetics of the Rhesus Blood Group System. Blood Transfus. 2007, 5 (2), 50–57. 

https://doi.org/10.2450/2007.0011-07. 

(23) Is eye color determined by genetics?: MedlinePlus Genetics. 

https://medlineplus.gov/genetics/understanding/traits/eyecolor/ (accessed 2024-11-27). 

(24) Branicki, W.; Brudnik, U.; Wojas-Pelc, A. Interactions between HERC2, OCA2 and MC1R May 

Influence Human Pigmentation Phenotype. Ann. Hum. Genet. 2009, 73 (2), 160–170. 

https://doi.org/10.1111/j.1469-1809.2009.00504.x. 

(25) Meyer, O. S.; Lunn, M. M. B.; Garcia, S. L.; Kjærbye, A. B.; Morling, N.; Børsting, C.; Andersen, 

J. D. Association between Brown Eye Colour in Rs12913832:GG Individuals and SNPs in TYR, 



48 

TYRP1, and SLC24A4. PLOS ONE 2020, 15 (9), e0239131. 

https://doi.org/10.1371/journal.pone.0239131. 

(26) Population genetics - Latest research and news | Nature. 

https://www.nature.com/subjects/population-genetics (accessed 2024-11-28). 

(27) Simons Genome Diversity Project. Simons Foundation. https://www.simonsfoundation.org/simons-

genome-diversity-project/ (accessed 2024-11-28). 

(28) CRB du CEPH. https://www.fjd-ceph.org/crb-du-ceph (accessed 2024-11-28). 

(29) ALFA: Allele Frequency Aggregator. https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ (accessed 

2024-11-28). 

(30) Quinton, A. R.; Kelty, S. F.; Scudder, N. Attitudes towards Police Use of Consumer/Private DNA 

Databases in Investigations. Sci. Justice 2022, 62 (3), 263–271. 

https://doi.org/10.1016/j.scijus.2022.02.009. 

(31) Russell, K.; Kelty, S. F.; Scudder, N. Public and Family Support and Concerns for Providing DNA 

to Law Enforcement in Long-Term Missing Person Cases. Sci. Justice 2023, 63 (2), 149–157. 

https://doi.org/10.1016/j.scijus.2022.12.004. 

(32) How 23andMe Responds to Law Enforcement Requests for Customer Information. 23andMe 

Customer Care. https://customercare.23andme.com/hc/en-us/articles/212271048-How-23andMe-

Responds-to-Law-Enforcement-Requests-for-Customer-Information (accessed 2024-11-27). 

(33) Whittaker, Z. Ancestry says it fought two police requests to search its DNA database. TechCrunch. 

https://techcrunch.com/2021/02/10/ancestry-police-warrant-dna-database/ (accessed 2024-11-30). 

(34) Home - SNP - NCBI. https://www.ncbi.nlm.nih.gov/snp/ (accessed 2024-11-30). 

(35) openSNP. https://opensnp.org/ (accessed 2024-11-30). 

(36) compute_class_weight. scikit-learn. https://scikit-

learn/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html (accessed 

2024-12-16). 

(37) World Population By Percentage of Blood Types. WorldAtlas. 

https://www.worldatlas.com/articles/what-are-the-different-blood-types.html (accessed 2024-12-

01). 

(38) Martin–Schultz scale. Academic Dictionaries and Encyclopedias. https://en-

academic.com/dic.nsf/enwiki/11703157 (accessed 2024-12-01). 

(39) Eye colors: Most common and percentages. https://www.medicalnewstoday.com/articles/eye-color-

percentage (accessed 2024-12-02). 

(40) Is hair color determined by genetics?: MedlinePlus Genetics. 

https://medlineplus.gov/genetics/understanding/traits/haircolor/ (accessed 2024-12-03). 



49 

(41) Wang, C.; Zöllner, S.; Rosenberg, N. A. A Quantitative Comparison of the Similarity between 

Genes and Geography in Worldwide Human Populations. PLOS Genet. 2012, 8 (8), e1002886. 

https://doi.org/10.1371/journal.pgen.1002886. 

(42) Cox, M. A. A.; Cox, T. F. Multidimensional Scaling. In Handbook of Data Visualization; Chen, C., 

Härdle, W., Unwin, A., Eds.; Springer: Berlin, Heidelberg, 2008; pp 315–347. 

https://doi.org/10.1007/978-3-540-33037-0_14. 

(43) pdist — SciPy v1.14.1 Manual. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html (accessed 

2024-12-16). 

(44) Li-Gao, R.; Carlotti, F.; de Mutsert, R.; van Hylckama Vlieg, A.; de Koning, E. J. P.; Jukema, J. W.; 

Rosendaal, F. R.; Willems van Dijk, K.; Mook-Kanamori, D. O. Genome-Wide Association Study 

on the Early-Phase Insulin Response to a Liquid Mixed Meal: Results From the NEO Study. 

Diabetes 2019, 68 (12), 2327–2336. https://doi.org/10.2337/db19-0378. 

(45) Paterson, A. D.; Lopes-Virella, M. F.; Waggott, D.; Boright, A. P.; Hosseini, S. M.; Carter, R. E.; 

Shen, E.; Mirea, L.; Bharaj, B.; Sun, L.; Bull, S. B.; the Diabetes Control and Complications 

Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Genome-Wide 

Association Identifies the ABO Blood Group as a Major Locus Associated With Serum Levels of 

Soluble E-Selectin. Arterioscler. Thromb. Vasc. Biol. 2009, 29 (11), 1958–1967. 

https://doi.org/10.1161/ATVBAHA.109.192971. 

(46) What Is the Rarest Eye Color?. Verywell Health. https://www.verywellhealth.com/what-is-the-

rarest-eye-color-5087302 (accessed 2024-12-04). 

(47) NCBI Variation Services. https://api.ncbi.nlm.nih.gov/variation/v0/ (accessed 2024-12-10). 

(48) Index of /genetics/reich_lab/sgdp/vcf_variants. 

https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/ (accessed 2024-12-10). 

(49) SPSmart. http://spsmart.cesga.es/search.php?dataSet=ceph_stanford (accessed 2024-12-10). 

(50) BigQuery – Google Cloud console. https://console.cloud.google.com/bigquery?p=bigquery-public-

data&page=table&t=1000_genomes_phase_3_variants_20150220&d=human_genome_variants&pli

=1&inv=1&invt=AbjxDg&project=applied-dialect-422121-g5&ws=!1m5!1m4!4m3!1sbigquery-

public-data!2shuman_genome_variants!3s1000_genomes_phase_3_variants_20150220 (accessed 

2024-12-10). 



50 

Appendices 

Appendix A: Data Resources 

Table 16. Data Sources for Genetic Analysis. 

Dataset Source 

ALFA Frequency and dbSNP data was obtained via python through NCBI API, using 

RefSNP services: 

https://api.ncbi.nlm.nih.gov/variation/v0/ 29,47 

SGDP https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/

vcf_variants/ 48 

HGDP http://spsmart.cesga.es/search.php?dataSet=ceph_stanford 

49 

1000 Genomes Project https://console.cloud.google.com/bigquery?p=bigquery-

public-

data&page=table&t=1000_genomes_phase_3_variants_20

150220&d=human_genome_variants 50 

Or 

https://www.internationalgenome.org/data/ 17 

OpenSNP https://opensnp.org/ 35 

 

 

 

https://api.ncbi.nlm.nih.gov/variation/v0/
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/
http://spsmart.cesga.es/search.php?dataSet=ceph_stanford
https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=table&t=1000_genomes_phase_3_variants_20150220&d=human_genome_variants
https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=table&t=1000_genomes_phase_3_variants_20150220&d=human_genome_variants
https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=table&t=1000_genomes_phase_3_variants_20150220&d=human_genome_variants
https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=table&t=1000_genomes_phase_3_variants_20150220&d=human_genome_variants
https://www.internationalgenome.org/data/
https://opensnp.org/
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Appendix B: List of Model SNPs 

The following tables include terms used in this paper. Their meanings are clarified below to aid 

in interpretation: 

• effect_allele: Denotes the “effect allele”, which is the allele variation associated with the 

reference phenotype and serves as the basis for encoding. 

• other_allele: Denotes the “other allele”, which is the allele variation that is either 

negatively associated with, or not associated with the reference phenotype, 

Table 17. Biological Gender prediction SNPs 

rsid effect_allele other_allele  ref_phenotype 

rs757619452 G A  Male 

rs569336697 T C  Male 

rs11575897 G A  Male 

rs2534636 C T  Male 
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Table 18. Blood Type Prediction SNPs 

rsid effect_allele other_allele ref_phenotype 

rs8176719 D I O 

rs505922 T C O 

rs657152 A C O 

rs8176704 G A O 

rs612169 G A O 

rs529565 C T O 

rs8176693 C T O 

rs514659 C A O 

rs8176645 A T O 

rs512770 G A O 

rs688976 C A O 

rs8176672 C T A 

rs8176741 G A A 

rs8176722 C A A 

rs8176720 T C A 

rs7853989 C G A 

rs8176743 C T A 

rs8176747 G C A 

rs635634 C T A 

rs507666 A G A 

rs687289 A G A 

rs8176746  G T A 

rs8176749 C T A 

rs7030248 A G AB 

rs41302905 T C O 

rs590787 C A RhD (Rh+) 

i4001527 C T RhD (Rh+) 
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Table 19. Eye Color Prediction SNPs 

rsid associated_color effect_allele other_allele 

rs12913832 blue G A 

rs16891982 blue G C 

rs12203592 blue/green T C 

rs12896399 blue T G 

rs6119471 brown (G) C G 

rs35866166 brown (C) T C 

rs62538956 brown (C) T C 

rs1289469 brown (C) A C 

rs1126809 brown (G) A G 

rs1426654 brown (G) A G 

rs1800407 blue/gray T C 

rs1393350 blue A G 

rs1408799 blue C T 

rs1800401 blue A G 

rs7174027  light G A 

rs3794604 light C T 

rs4778241 darker C A 

rs1129038 blue T C 

rs1667394 blue T C 

rs916977 light C T 

rs11636232 light T C 

rs7174027 dark G A 

rs7495174 light A G 

rs7183877 blue C A 

rs1800411 light A G 

rs1498519 light G T 

rs977588 lighter color A C 

rs12593929 light A G 

rs3935591 light C T 

rs7170852 light A T 

rs2238289 blue A G 

rs3940272 blue G T 

rs8028689 blue T C 

rs2240203 blue T C 

rs11631797 blue G A 

rs35264875 light T A 
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Table 20. Red Hair vs. Non-Red Hair Prediction SNPs 

rsid effect_allele other_allele ref_phenotype 

rs1805007 T C red hair 

rs1805008 T C red hair 

i3002507 C G red hair 

rs1805006 A C red hair 

rs11547464 A G red hair 

rs1805009 C G red hair 

rs3212379 T C red hair 

rs34474212 C T red hair 

rs34158934 T C red hair 

rs201326893 A C red hair 

rs555179612 D I red hair 

rs200000734 T C red hair 

rs368507952 A G red hair 

Table 21. Light vs. Dark Hair Color Prediction SNPs 

rsid associated_color effect_allele other_allele 

rs35264875 blonde T A 

rs4911414 blonde T G 

rs12896399 blonde T G 

rs8033165 blonde T C 

rs12913832 blonde G A 

rs12203592 blonde T C 

rs28777 blonde A C 

rs6918152 blonde G A 

rs12821256 blonde C T 

rs1667394 blonde T C 

rs12931267 blonde G C 

rs16891982 blonde G C 

rs291671 Blonde G A 

rs1129038 Blonde T C 

rs8045560 Blonde T C 

rs1110400 Blonde C T 

rs1268789 Blonde C T 

rs1393350 Blonde A G 
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rs885479 blonde A G 

rs3829241 blonde A G 

rs1042602 blonde C A 

rs1800407 blonde T C 

rs17783630 Blonde C A 

rs7603664 Blonde C T 

rs974455 Blonde A G 

rs7495174 Blonde A G 

rs916977 Blonde C T 

rs11636232 Blonde T C 

rs4778241 Blonde C A 

rs7174027 Blonde G A 

rs26722 Light C T 

rs1015362 Blonde C T 

rs3794604 Light C T 

rs9782955 Light C T 

rs1126809 brown (G) A G 

rs1426654 Light A G 

rs1408799 Light C T 

rs1800401 light G A 

rs4911442 light G A 

rs312262906 light D I 

rs796296176 light D I 

rs201326893 light A C 

rs4959270 light A C 

rs2402130 light A G 

rs683 light A C 

 

 

 

 

 

 

 

 

 



56 

Appendix C: Reported Eye and Hair Color Classifications 

I. Eye color classifications: 

Class 1: Blue/Blue Mixed (Martin-Schultz Scale 1–5) 

'blue', 'Blue', 'Dark blue', 'Dark Blue', 'Blue spot of brown', 'blue spot of brown', 'Split - one 

side dark blue / other side light blue and green', ‘Ice blue mixed with slate blue, with an amber 

pupil burst in both eyes and a brown spot adjacent to lower left pupil. eyes were green into my 

20's.’, 'Light gray/blue.', 'Light Gray Blue', 'Gray-blue', 'blue-grey', 'gray-blue', 'Blue-grey', 

'Blue/gray', 'Blue grey', 'Blue/gray', 'Dark Grayish-Blue Eyes (like a stone)', 'Blue-grey with 

central heterochromia', 'Light gray/blue. amber/med brown on sphincter. gray ring around 

outer edge. flecks (nevi).', 'Light Gray/Blue. Amber/Med Brown on Sphincter. Gray ring 

around outer edge. Flecks (Nevi).', 'Light gray/blue. amber/med brown on sphincter. gray ring 

around outer edge. flecks (nevi).', 'Blue with yellow parts', 'Blue with yellow inner ring', 'blue-

brown heterochomia', 'blue-brown heterochromia ', 'blue-brown heterochromia', 'blue-

green', 'Blue-green', 'blue-green ', 'Blue/Green', 'Blue/green', 'Blue-green ', 'Light blue-green', 

'Blue-grey; broken amber collarette', 'Blue with a yellow ring of flecks that make my eyes look 

green depending on the light or my  mood     '. 

 

Class 2: Green/Light-Mixed (Martin-Schultz Scale 6–8) 

'Light green', 'Light-mixed Green', 'Light-mixed green', 'green', 'Green', 'Green ', 'Green with 

blue halo', 'Green-gray', 'Grey and amber', 'Grey and Amber', 'green-blue outer ring and brown 

flecks around iris', 'Green-blue outer ring and brown flecks around iris', 'Green with brown 

freckles', 'Green yellow', 'green yellow', 'Blue/green/gold', 'Green with amber burst and gray 

outer ring', 'Ambar-Green', 'Ambar-green', 'hazel light green', 'Hazel light green', 'Green-hazel', 

'Green-Hazel', 'Blue-green; amber collarette, and gray-blue ringing', 'Blue-green-grey',  'Hazel, 

olive green with amber starburst', 'Dark gray, blue, green (central heterochromia), 

yellow/brown ring around pupil, ', 'Hazel green', 'one brown one green', 'blue, grey, green, 

changing', 'Blue, grey, green, changing', 'Changes blue/green/grey', 'Changes with mood 

blue/grey/green', 'Blue/green/grey - changes with lighting and clothing', 'Changes with mood 

blue/grey/green', 'Blue/green/grey - changes with lighting and clothing', 'Blue/Green/Grey - 

changes with lighting and clothing'. 
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Class 3: Dark-Mixed/Brown (Martin-Schultz Scale 9–16) 

'Black', 'Brown/black', 'Dark brown', 'dark brown', 'Dark brown', 'Brown', 'brown', 'Olive-

Brown ringing Burnt Umber-Brown', 'Olive-brown ringing burnt umber-brown', 'indeterminate 

brown-green with a subtle grey caste', 'Indeterminate brown-green with a subtle grey caste', 

'Hazel', 'hazel', 'Hazel/Light Brown', 'Hazel/light brown', 'Hazel (brown/green)', 'Hazel dark 

green', 'Hazel (light brown, dark green, dark blue)',  'Hazel/Yellow', 'Hazel/yellow', 'light 

brown with dark green tint', 'Light brown with dark green tint', 'green-brown', 'Brown-green', 

'Green-brown', 'brown-green', ' green brown', 'Brown green starburst', 'Amber/Brown', 

'Amber/brown', 'Brown-Amber', 'Brown-amber', 'Amber - (yellow/ocre  brown)', 'Brown-

(green when external temperature rises)', 'Brown - Brown and green in bright sunlight', 'Brown 

- brown and green in bright sunlight', 'Grey brown', 'Brown with blue outer ring', 'Brown inner, 

dark green outer', 'Brown center starburst, amber and olive green, with dark gray outer ring', 

'Losing eye pigment as i age, currently in the light brown almost green phase'. 
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II. Hair color classifications: 

Brown to Dark Brown/Black 

'Black', 'Black ', 'Brown-Black', 'Brown-black', 'Blackish brown', 'Brown-black/Brown', 

'Brown-black/Dark brown', 'Black/Black (very slight tint of red)', 'Black/Dark brown', 

'Brown-black/Very dark brown', 'Black/Brown', 'Darkest brown to black ', 'Brown-

Black/Darkest brown to black ', 'Brown-Black/Very dark brown', 'Darkest brown to black', 

'Dark brown almost black', 'Brown-black/Dark brown almost black', 'Brown-Black/Dark 

brown almost black', 'Black/Medium golden brown', 'Very dark brown', 'Dark Brown/Very 

dark brown', 'Dark brown/Brunette', 'Brown to Dark brown', 'Dark Brown', 'dark brown', 

'Dark brown', 'Brown to dark brown', 'Dark brown to brown', 'Brown/Dark brown', 'Dark 

brown/Brown', 'Medium to dark brown', 'Brown', 'brown', 'Brown going to white in early 

40s', 'Brown and silver', 'Grey and brown', 'Brunette', 'Brown,red,blond', ‘Reddish brown', 

'Strawberry blonde/Reddish Medium Brown', 'Medium brown', 'Medium Brown', 

'Brown/Medium brown', 'med brown', 'Dark brown; blonde highlights', 'Medium brown 

with highlights', 'Reddish-brown/Very dark brown', 'Brown/Reddish brown', 'Dark brown; 

red highlights', 'Dark brown; red highlights/Medium to dark brown', 'medium brown, red 

highlights', 'Medium brown, red highlights', 'Brown/Reddish medium brown', 'Blondish 

reddish brown', 'Auburn (Reddish-Brown)', 'Auburn', 'Auburn (reddish-brown)', 'Reddish-

brown', 'Reddish medium brown', 'Dark auburn', 'Between dark blonde and light 

brown/Dark auburn', 'Auburn (reddish-brown)/Medium golden brown', 'Auburn (reddish-

brown)/Brown', 'Chestnut', 'Chestnut brown', 'strawberry brown', 'Strawberry brown', 

'Strawberry blond as a child, now dark auburn brown', 'Dirt-Brown', 'Dirt-brown/Medium 

brown', 'Dirt-brown',  'Light to Medium brown', 'Light to medium brown', 'Medium 

Brown/Light brown', 'Medium golden brown', 'Medium Golden Brown', 'Light 

brown/Medium golden brown', 'medium brown/Light brown', 'Light brown', 'Light ashy 

brown', 'Chestnut/Light brown', 'Light Brown', 'light brown', 'light ashy brown ', 

'Brown/Light brown', 'Toe head to dark reddish brown', 'blond born, today dark brown', 

'Blond born, today dark brown', 'Dark blonde as a child, dark brown as an adult', 'Blond 

born, today dark brown/Grey and Brown', 'Hair darkening with age, starting blonde, 

ending dark brown', 'Brown/Blond as child. started turning dark brown after puberty', 

'Blond as child. started turning dark brown after puberty', 'Blond born, today dark 
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brown/Brown', 'Blond born, today dark brown/Medium brown', 'Blonde to light brown as 

child, medium brown as adult with blonde highlights from sun', 'Dark blonde/Blonde to 

light brown as child, medium brown as adult with blonde highlights from sun', 'Dark 

Blond/Blonde to light brown as child, medium brown as adult with blonde highlights from 

sun', 'Light Brown/Blonde to light brown as child, medium brown as adult with blonde 

highlights from sun', 'very light blonde as child to med brown as adult', 'Blonde as a child, 

to brown as an adult', 'Brunette/Blonde as a child, to brown as an adult', 'Dark blonde as a 

child, chestnut brown as an adult', 'Blond as a child and light brown as an adult', 'Blonde as 

a child, light brown as an adult', 'Very light blonde as child to med brown as adult'. 

 

Blonde to Dark Blonde 

'Blonde', 'Blond', 'Blond grey', 'Blonde/Dark blonde ', 'Blond/Light blonde', 'Light 

brown/Blonde', 'light blonde as a child and medium blonde as an adult.', 'Blonde as child, ash 

blonde as adult, early white', 'Blond as a child. Dark blond as an adult.', 'Dark blonde/dark ash 

blonde, lightens in sun very easily. platinum blonde as child', 'Dark blonde/Blonde as a child, 

to brown as an adult', 'Blond as a child. dark blond as an adult.', 'Dark blonde ', 'Dark blonde', 

'Dark Blond', 'Dark blond', 'Blonde/Dark blonde-light brown', 'Between dark blonde and light 

brown', 'Dark blonde with a little of every colour but black.', 'Dark blonde (light brown)', 'Dark 

blonde/light brown', 'Dirt-Blonde', 'Dirt-blonde', 'Dark blonde / Dirt-blonde', 'Dirt-blonde/Dark 

blonde', 'Dishwater blonde', 'Dirty blonde, light brown, something?', 'Dirt-blonde/Dark blonde 

', 'Dirty Blond, Dark Red Beard', 'Strawberry blonde', 'Dark blonde, strawberry', 'Strawberry 

Blond', 'Light Brown/Dark blonde, ', 'Dirt-brown/Dark Blond'. 
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Appendix D: Populations Classifications into Subgroups 

1. Africa 

African Ancestry in Southwest US, Americans of African Ancestry in SW USA, C. African 

Republic - Biaka Pygmy, D. R. of Congo - Mbuti Pygmy, Esan in Nigera, Gambian in 

Western Divisons in The Gambia, Kenya - Bantu, Luhya in Webuye,  Kenya, Mende in 

Sierra Leone, MKK, Namibia - San, Nigeria - Yoruba, Nigeria - YRI HapMap, Senegal - 

Mandenka, South Africa - Bantu, Yoruba in Ibadan,  Nigeria, CHD, African Carribbeans in 

Barbados, 03. Nigeria - Yoruba, 04. Namidia - San, 06. Central African Republic - Biaka 

Pygmies, BotswanaOrNamibia - BantuTswana, Congo - Mbuti, Dinka-3, Kenya - 

BantuKenya, Kenya - Luhya, Kenya - Luo, Namibia - Ju_hoan_North, SouthAfrica - 

Khomani_San, Sudan - Dinka, 06. Central African Republic - Biaka Pygmies 

2. Central and South America 

Puerto Rican, Puerto Ricans from Puerto Rico, Mexican Ancestry, Mexican Ancestry from 

Los Angeles USA, Colombian, Colombians from Medellin Colombia, Peruvians from Lima 

Peru (detected admixture) 

3. Middle East 

Algeria (Mzab) - Mozabite, Israel (Carmel) - Druze, Israel (Central) - Palestinian, Israel 

(Negev) - Bedouin, Iraq - Iraqi_Jew, Israel(Central) - Palestinian, Jordan - Jordanian, 

Western Sahara (Morocco) - Saharawi, Yemen - Yemenite_Jew, Iran - Iranian 

4. East Asia and China 

Brunei - Dusun, Cambodia - Cambodian,  in Ho Chi Minh City,  Vietnam, Thai-1, Thai-2, 

Agta-1, Agta-2, Agta-3, Bajo-17, Bajo-19, Bajo-21, Balkars-1, Batak-1, Batak-2, Batak-3, 

Dusun-10, Dusun-11, Dusun-12, Dusun-14, Dusun-4, Dusun-5, Dusun-7, Dusun-8, Igorot-1, 

Igorot-2, Igorot-3, Igorot-3, Igorot-4, Igorot-4, Igorot-5, Igorot-6, Lebbo-1,  Lebbo-2, Lebbo-

3, Lebbo-4, Luzon-2, Luzon-6, Murut-11, Murut-13, Murut-19, Murut-3,  Murut-4,  Murut-5, 

Murut-6, Philippines - Igorot, Taiwan - Ami, Vietnamese_central-1, Vietnamese_central-2, 

Vietnamese_north-1, Vietnamese_north-2, Vietnamese_north-3, Vietnamese_south-1, 

Vietnamese_south-2, Vietnamese_south-3, Vietnamese_south-4, Vietnamese_south-5, 

Vizayan-1, Vizayan-3, Japan - Japanese, Japan - JPT HapMap, Japanese in Tokyo,  Japan, 

43. Japan - Japanese, Korea - Korean, Korean-2, China - Dai, China - Daur, China - Han, 

China - Hezhen, China - Lahu, China - Miaozu, China - Naxi, China - Oroqen, China - She, 

China - Tu, China - Tujia, China - Uygur, China - Xibo, China - Yizu, Chinese Dai in 

Xishuangbanna,  China, Han Chinese, She-1, She-2, Southern Han Chinese, 31. China - 

Hezhen 



61 

5. Eastern Europe and West Eurasia 

Russia (Caucasus) - Adygei, Kyrgyzystan - Kyrgyz, Bashkirs-10, Bashkirs-2, Bashkirs-3, 

Bashkirs-4, Bashkirs-6, Belarusians-1, Belarusians-2, Belarusians-3, Belarusians-4, Bulgaria 

- Bulgarian, Bulgaria - Bulgarian, Chuvashes-1, Chuvashes-2,  Chuvashes-3, Croats-1, 

Croats-2, Croats-3, Croats-6, Czechoslovia(pre1989) - Czech, Estonia - Estonian, Estonians-

1, Estonians-2, Estonians-3, Estonians-4, Estonians-5, Estonians-6, Finland - Saami, Finland 

- Saami, Greece - Crete, Greece - Crete, Greece - Greek, Greece - Greek, Hungarians-1, 

Hungarians-2, Hungary - Hungarian, Hungary - Hungarian, Ingrians-1, Ingrians-2, Ingrians-

3, Latvians-1, Latvians-2, Latvians-3, Lithuanians-1, Lithuanians-2, Lithuanians-3, Maris-1, 

Maris-2, Maris-3, Maris-4, Moldavians-2, Moldavians-3, Mordvins-1, Mordvins-2, 

Mordvins-3, Poles-1, Poles-2, Poles-3, Poles-4, Russia(Caucasus) - Adygei, 

Russia(Caucasus) - Adygei, Udmurds-1, Udmurds-2, Udmurds-3, Udmurds-4, 

Ukrainians_east-1, Ukrainians_east-2, Ukrainians_east-3, Ukrainians_north-1, 

Ukrainians_west-1, Ukrainians_west-2, Ukrainians_west-3, Vepsas-1, Vepsas-2, Vepsas-3, 

Vepsas-4, Kumyks-1, Kumyks-2, Kumyks-3, Kryashen-Tatars-4, Kryashen-Tatars-5, 

Kryashen-Tatars-8, Tatars-1, Tatars-2, Tatars-3, Abkhazia - Abkhasian, Abkhazians-1, 

Abkhazians-5, Abkhazians-6, Albania - Albanian, Albanians-1, Albanians-2, Albanians-3, 

Armenia - Armenian, Armenia - Armenian, Armenians-1, Armenians-2, Armenians-3, 

Armenians-4, Armenians-5, Armenians-7, Avars-1, Avars-12, Avars-9, Azerbaijanis-13, 

Azerbaijanis-14, Azerbaijanis-24, Balkars-2, Balkars-4, Circassians-1, Circassians-2, 

Circassians-3, Cossacks_Kuban-1, Cossacks_Kuban-2, Cossacks-1, Cossacks-2, Georgia - 

Georgian, Georgia - Georgian, Georgians-1, Georgians-2, Kabardins-1, Kabardins-2, 

Kabardins-3, Kabardins-4, Kazakhs-1, Kazakhs-2, Kazakhs-3, Kyrgyz_Tdj-1, Kyrgyz_Tdj-2, 

Kyrgyz_Tdj-3, Kyrgyz-1, Kyrgyz-2, Kyrgyz-3, Kyrgyz-4, Lezgins-1, Lezgins-2, Lezgins-3, 

Lezgins-4, Poland - Polish, Rushan-Vanch-1, Rushan-Vanch-2, Russia - Abkhasian, Russia - 

Chechen, Russia - Lezgin, Russia - Lezgin, Russia - North_Ossetian, Russia-North_Ossetian, 

Tabasarans-4, Tabasarans-5, Tabasarans-7, Tajikistan - Tajik, Tajikistan - Tajik, Tajiks-1, 

Turkey - Turkish, Turkey - Turkish, Turkmens-2, Uzbek-1, Uzbek-2, Uzbek-3 

6. Europe 

British, British in England and Scotland, Finnish in Finland, France - Basque, France - 

French, Iberian population in Spain, Iberian populations in Spain, Icelandic-1, Icelandic-2, 

Italy - from Bergamo, Italy - Sardinian, Italy - Tuscan, Norwegian-1, Orkney Islands - 

Orcadian, Utah residents (CEPH) with Northern and Western European ancestry, Germans-1, 

Germans-2, Germans-3, Saami-4, Saami-5, Saami-6, Swedes-1, Swedes-2, Toscani in Italia, 

Toscani in Italy, Russia - Russian, Russia, Russians-Central-1, Russians-North-2, Russia, 

Russians-North-1, Russia 
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7. Native Americans 

Argentina - Chane, Brazil - Karitiana, Brazil - Surui, Colombia - Piapoco, Colombia - 

Piapoco and Curripaco, Mexico - Maya, Mexico - Mayan, Mexico - Mixe, Mexico - Mixtec, 

Mexico - Pima, Mexico - Zapotec, Puerto Rican - Quechua 

8. Northeast Asia and Siberia 

Russia - Tlingit, China - Mongola, Russia - Aleut, Russia - Altaian, Russia - Chukchi, Russia 

- Eskimo_Sireniki, Russia - Even, Russia - Ulchi, Russia - Yakut, Siberia - Yakut, Altaians-

1, Altaians-2, Altaians-3, Altaians-4, Altaians-5, Altaians-6, Buryats-11, Buryats-318, 

Buryats-336, Buryats-350, Buryats-355, Buryats-361, Buryats-383, Buryats-398, Buryats-

406, Buryats-530, Buryats-561, Buryats-578, Buryats-6, Buryats-636, Buryats-639, Buryats-

640, Eskimo-11, Eskimo-2, Eskimo-20, Eskimo-3, Evenks-1, Evenks-1, Evenks-14, Evenks-

16, Evenks-2, Evenks-21, Evenks-22, Evenks-31, Evenks-35, Evenks-40, Evenks-41, 

Evenks-55, Evenks-62, Evens_Magadan-1, Evens_Magadan-2, Evens_Magadan-3, 

Evens_Magadan-3, Evens_Magadan-5, Evens_Sakha-1, Evens_Sakha-2, Evens_Sakha-3, 

Koryaks-1, Koryaks-10, Koryaks-11, Koryaks-12, Koryaks-13, Koryaks-14, Koryaks-15, 

Koryaks-16, Koryaks-2, Koryaks-3, Koryaks-4, Koryaks-5, Koryaks-6, Koryaks-7, Koryaks-

8, Koryaks-9, Mongolians-1, Mongolians-2, Mongolians-3, Mongolians-4, Mongolians-5, 

Mongolians-6, Russia - Eskimo_Chaplin, Russia - Eskimo_Naukan, Russia - 

Eskimo_Naukan, Russia - Itelman, Russia - Mansi, Russia - Mansi, Yakut-K4, Yakuts-1, 

YakutS4, YakutS8, Yakuts-K1, Yakuts-K2, Yakuts-K3, Yakuts-M1 

9. Oceania 

Bougainville - NAN Melanesian, New Guinea - Papuan, New Zealand - Maori, 

PapuaNewGuinea - Papuan, Australia - Australian, PapuaNewGuinea - Bougainville, 

PapuaNewGuinea - Bougainville,USA - Hawaiian 

10. South Asia 

Bengali from Bangladesh, Gujarati Indians in Houston,  TX, Indian Telugu from the UK, 

Pakistan - Balochi, Pakistan - Brahui, Pakistan - Burusho, Pakistan - Hazara, Pakistan - 

Kalash, Pakistan - Makrani, Pakistan - Pathan, Pakistan - Sindhi, Punjabi from Lahore,  

Pakistan, Sri Lankan Tamil from the UK, India - Brahmin, Nepal - Kusunda, Burmese-12, 

Burmese-14, Burmese-15, Burmese-20, Burmese-3 
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Appendix E: Classification Results for all models 

Blood Type Prediction 

Table 22. Models’ classification results for blood type prediction. 

Logistic Regression 

 Precision Recall F1-score Support 

A 0.947 0.954 0.950 281.000 

AB 0.784 0.816 0.800 49.000 

B 0.876 0.944 0.909 90.000 

O 0.976 0.941 0.958 306.000 

Macro avg 0.896 0.914 0.904 726.000 

Weighted avg 0.940 0.938 0.938 726.000 

Accuracy 0.938    

Random Forest 

 Precision Recall F1-score Support 

A 0.960 0.947 0.953 281.000 

AB 0.816 0.816 0.816 49.000 

B 0.944 0.944 0.944 90.000 

O 0.968 0.980 0.974 306.000 

Macro avg 0.922 0.922 0.922 726.000 

Weighted avg 0.952 0.952 0.952 726.000 

Accuracy 0.952    

Gradient Boosting 

 Precision Recall F1-score Support 

A 0.957 0.954 0.955 281.000 

AB 0.932 0.837 0.882 49.000 

B 0.946 0.967 0.956 90.000 

O 0.968 0.980 0.974 306.000 

Macro avg 0.951 0.934 0.942 726.000 

Weighted avg 0.958 0.959 0.958 726.000 

Accuracy 0.959    

Neural Network (MLP) 

 Precision Recall F1-score Support 

A 0.944 0.954 0.949 281.000 

AB 0.844 0.776 0.809 49.000 

B 0.912 0.922 0.917 90.000 

O 0.967 0.967 0.967 306.000 

Macro avg 0.917 0.905 0.910 726.000 

Weighted avg 0.943 0.944 0.943 726.000 

Accuracy 0.944    

Decision Tree Classifier 

 Precision Recall F1-score Support 

A 0.951 0.904 0.927 281 

AB 0.683 0.837 0.752 49 

B 0.923 0.933 0.928 90 

O 0.968 0.974 0.971 306 

Macro avg 0.881 0.912 0.895 726 

Weighted avg 0.937 0.933 0.934 726 

Accuracy 0.933    
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Eye color prediction 

Table 23. Models’ classification results for the 3-colors hair color prediction dataset. 

Logistic Regression 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.770 0.758 0.764 517 

Dark Mixed/Brown 0.907 0.839 0.872 713 

Green/Light-Mixed 0.273 0.356 0.309 202 

macro avg 0.650 0.651 0.648 1432 

weighted avg 0.768 0.742 0.754 1432 

Accuracy 0.742    

Random Forest 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.712 0.805 0.756 517 

Dark Mixed/Brown 0.864 0.899 0.881 713 

Green/Light-Mixed 0.274 0.144 0.188 202 

macro avg 0.617 0.616 0.608 1432 

weighted avg 0.726 0.758 0.738 1432 

Accuracy 0.758    

Gradient Boosting 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.716 0.903 0.799 517 

Dark Mixed/Brown 0.867 0.902 0.884 713 

Green/Light-Mixed 0.237 0.045 0.075 202 

macro avg 0.607 0.617 0.586 1432 

weighted avg 0.723 0.781 0.739 1432 

Accuracy 0.781    

Neural Network (MLP) 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.722 0.814 0.765 517 

Dark Mixed/Brown 0.842 0.854 0.848 713 

Green/Light-Mixed 0.175 0.109 0.134 202 

macro avg 0.580 0.592 0.583 1432 

weighted avg 0.705 0.735 0.718 1432 

Accuracy 0.735    

Decision Tree Classifier 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.680 0.665 0.673 517 

Dark Mixed/Brown 0.833 0.774 0.802 713 

Green/Light-Mixed 0.205 0.267 0.232 202 

macro avg 0.573 0.569 0.569 1432 

weighted avg 0.689 0.663 0.675 1432 

Accuracy 0.663    
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Table 24. Models’ classification results for the Blue/Blue-Mixed vs. Green/Light-Mixed subset. 

Logistic Regression 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.818 0.721 0.767 517 

Green/Light-Mixed 0.452 0.589 0.512 202 

macro avg 0.635 0.655 0.639 719 

weighted avg 0.715 0.684 0.695 719 

Accuracy 0.684    

Random Forest 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.769 0.841 0.803 517 

Green/Light-Mixed 0.464 0.351 0.400 202 

macro avg 0.616 0.596 0.602 719 

weighted avg 0.683 0.704 0.690 719 

Accuracy 0.704    

Gradient Boosting 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.779 0.928 0.847 517 

Green/Light-Mixed 0.641 0.327 0.433 202 

macro avg 0.710 0.628 0.640 719 

weighted avg 0.740 0.759 0.731 719 

Accuracy 0.759    

Neural Network (MLP) 

 Precision Recall  F1-score Support 

Blue/Blue-Mixed 0.771 0.861 0.814 517 

Green/Light-Mixed 0.493 0.347 0.407 202 

macro avg 0.632 0.604 0.610 719 

weighted avg 0.693 0.716 0.699 719 

Accuracy 0.716    

Decision Tree Classifier 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.763 0.723 0.743 517 

Green/Light-Mixed 0.376 0.426 0.399 202 

macro avg 0.569 0.575 0.571 719 

weighted avg 0.654 0.640 0.646 719 

Accuracy 0.640    
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Table 25. Models’ classification results for the Blue/Blue-Mixed vs. Dark Mixed/Brown subset. 

Logistic Regression 

 Precision   Recall F1-score Support 

Blue/Blue-Mixed 0.887 0.942 0.914 517 

Dark Mixed/Brown 0.956 0.913 0.934 71 

macro avg 0.922 0.928 0.924 1230 

weighted avg 0.927 0.925 0.925 1230 

Accuracy 0.925    

Random Forest 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.887 0.913 0.900 517 

Dark Mixed/Brown 0.936 0.916 0.926 71 

macro avg 0.911 0.914 0.913 1230 

weighted avg 0.915 0.915 0.915 1230 

Accuracy 0.915    

Gradient Boosting 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.895 0.925 0.910 517 

Dark Mixed/Brown 0.944 0.921 0.933 71 

macro avg 0.920 0.923 0.921 1230 

weighted avg 0.923 0.923 0.923 1230 

Accuracy 0.923    

Neural Network (MLP) 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.880 0.890 0.885 517 

Dark Mixed/Brown 0.919 0.912 0.915 71 

macro avg 0.899 0.901 0.900 1230 

weighted avg 0.903 0.902 0.903 1230 

Accuracy 0.902    

Decision Tree Classifier 

 Precision Recall F1-score Support 

Blue/Blue-Mixed 0.834 0.838 0.836 517 

Dark Mixed/Brown 0.882 0.879 0.881 71 

macro avg 0.858 0.858 0.858 1230 

weighted avg 0.862 0.862 0.862 1230 

Accuracy 0.862    
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Hair color prediction  

Table 26. Models’ classification results for red vs. non-red hair color. 

Logistic Regression 

 Precision Recall F1-score Support 

 No 0.929 0.829 0.876 111 

Yes 0.689 0.857 0.764 49 

macro avg 0.809 0.843 0.820 160 

weighted avg 0.856 0.838 0.842 160 

Accuracy 0.838    

Random Forest 

 Precision Recall F1-score Support 

 No 0.889 0.937 0.912 111 

Yes 0.837 0.735 0.783 49 

macro avg 0.863 0.836 0.847 160 

weighted avg 0.873 0.875 0.873 160 

Accuracy 0.875    

Gradient Boosting 

 Precision Recall F1-score Support 

 No 0.907 0.964 0.934 111 

Yes 0.905 0.776 0.835 49 

macro avg 0.906 0.870 0.885 160 

weighted avg 0.906 0.906 0.904 160 

Accuracy 0.906    

Neural Network (MLP) 

 Precision Recall F1-score Support 

 No 0.898 0.955 0.926 111 

Yes 0.881 0.755 0.813 49 

macro avg 0.890 0.855 0.869 160 

weighted avg 0.893 0.894 0.891 160 

Accuracy 0.894    

Decision Tree Classifier 

 Precision Recall F1-score Support 

 No 0.896 0.928 0.912 111 

Yes 0.822 0.755 0.787 49 

macro avg 0.859 0.842 0.849 160 

weighted avg 0.873 0.875 0.873 160 

Accuracy 0.875    
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Table 27. Models’ classification results for Light vs. Dark hair colors. 

Logistic Regression 

 Precision Recall F1-score Support 

Blonde to Dark Blonde 0.388 0.776 0.517 192 

Brown to Dark Brown/Black 0.937 0.731 0.821 874 

macro avg 0.662 0.754 0.669 1066 

weighted avg 0.838 0.739 0.767 1066 

Accuracy 0.739    

Random Forest 

 Precision Recall F1-score Support 

Blonde to Dark Blonde 0.561 0.167 0.257 192 

Brown to Dark Brown/Black 0.841 0.971 0.902 874 

macro avg 0.701 0.569 0.579 1066 

weighted avg 0.791 0.826 0.786 1066 

Accuracy 0.826    

Gradient Boosting 

 Precision Recall F1-score Support 

Blonde to Dark Blonde 0.547 0.302 0.389 192 

Brown to Dark Brown/Black 0.860 0.945 0.901 874 

macro avg 0.704 0.624 0.645 1066 

weighted avg 0.804 0.829 0.809 1066 

Accuracy 0.829    

Neural Network (MLP) 

 Precision Recall F1-score Support 

Blonde to Dark Blonde 0.424 0.391 0.407 192 

Brown to Dark Brown/Black 0.868 0.883 0.876 874 

macro avg 0.646 0.637 0.641 1066 

weighted avg 0.788 0.795 0.791 1066 

Accuracy 0.795    

Decision Tree Classifier 

 Precision Recall F1-score Support 

Blonde to Dark Blonde 0.383 0.365 0.373 192 

Brown to Dark Brown/Black 0.862 0.871 0.866 874 

macro avg 0.622 0.618 0.620 1066 

weighted avg 0.776 0.780 0.777 1066 

Accuracy 0.780    
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Table 28. Models’ classification report for Ancestry 

Logistic Regression 

 Precision Recall F1-score Support 

African 0.997 0.996 0.997 1030 

Central and South American 0.930 0.913 0.922 277 

East Asia and China 0.978 0.972 0.975 909 

Eastern European and West Eurasia 0.176 0.158 0.167 19 

European 0.964 0.968 0.966 688 

Middle East 0.796 0.883 0.837 163 

Native Americans 0.954 0.965 0.960 86 

Northeast Asia and Siberia 0.490 0.595 0.538 42 

Oceania 1.000 0.967 0.983 30 

South Asian 0.970 0.942 0.956 583 

macro avg 0.826 0.836 0.830 3827 

weighted avg 0.958 0.957 0.957 3827 

Accuracy 0.957    

Random Forest 

 Precision Recall F1-score Support 

African 0.994 0.995 0.995 1030 

Central and South American 0.953 0.661 0.780 277 

East Asia and China 0.949 0.993 0.970 909 

Eastern European and West Eurasia 0.000 0.000 0.000 19 

European 0.780 0.997 0.875 688 

Middle East 0.892 0.405 0.557 163 

Native Americans 0.988 0.942 0.964 86 

Northeast Asia and Siberia 1.000 0.024 0.047 42 

Oceania 1.000 0.933 0.966 30 

South Asian 0.930 0.937 0.933 583 

macro avg 0.849 0.689 0.709 3827 

weighted avg 0.923 0.920 0.908 3827 

Accuracy 0.920    

Gradient Boosting 

 Precision  Recall F1-score Support 

African 0.996 0.993 0.995 1030 

Central and South American 0.922 0.852 0.886 277 

East Asia and China 0.961 0.988 0.974 909 

Eastern European and West Eurasia 0.000 0.000 0.000 19 

European 0.909 0.972 0.940 688 

Middle East 0.814 0.804 0.809 163 

Native Americans 0.952 0.919 0.935 86 

Northeast Asia and Siberia 0.900 0.214 0.346 42 

Oceania 0.880 0.733 0.800 30 

South Asian 0.948 0.967 0.958 583 

macro avg 0.828 0.744 0.764 3827 

weighted avg 0.944 0.949 0.944 3827 

Accuracy 0.949    
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Neural Network (MLP) 

 Precision Recall F1-score Support 

African 0.995 0.995 0.995 1030 

Central and South American 0.933 0.899 0.915 277 

East Asia and China 0.972 0.988 0.980 909 

Eastern European and West Eurasia 0.182 0.105 0.133 19 

European 0.954 0.974 0.964 688 

Middle East 0.823 0.828 0.826 163 

Native Americans 0.920 0.930 0.925 86 

Northeast Asia and Siberia 0.760 0.452 0.567 42 

Oceania 1.000 0.967 0.983 30 

South Asian 0.952 0.961 0.956 583 

macro avg 0.849 0.810 0.824 3827 

weighted avg 0.956 0.958 0.956 3827 

Accuracy 0.958    

Decision Tree Classifier 

 Precision Recall F1-score Support 

African 0.953 0.954 0.954 1030 

Central and South American 0.592 0.523 0.556 277 

East Asia and China 0.910 0.912 0.911 909 

Eastern European and West Eurasia 0.000 0.000 0.000 19 

European 0.743 0.808 0.774 688 

Middle East 0.479 0.497 0.488 163 

Native Americans 0.788 0.779 0.784 86 

Northeast Asia and Siberia 0.273 0.286 0.279 42 

Oceania 0.806 0.833 0.820 30 

South Asian 0.740 0.702 0.720 583 

macro avg 0.628 0.629 0.629 3827 

weighted avg 0.809 0.812 0.810 3827 

Accuracy 0.812    

 


