GAME GENIE: THE ULTIMATE VIDEO GAME RECOMMENDATION SYSTEM

By

Nicholas D’Amato, Bachelor’s in Computer Science

A thesis submitted to the Graduate Committee of
Ramapo College of New Jersey in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Summer, 2024

Committee Members:
Dr. Sourav Dutta, Advisor
Dr. Ali Al-Juboori, Reader

Dr. Lawrence D'Antonio, Reader



COPYRIGHT

© Nicholas D’ Amato

2024






Dedication

To my family and friends who’ve supported me every step of the way



Table of Contents

Dedication iv
Table of Contents %
List of Tables Vi
List of Figures vii
Abstract 1
1.  Introduction 2
1.1. Background 2

1.2. Problem Statement 2

1.3.  Significance of the Study 3

1.4.  Objectives of Study 5

1.5.  Structure of the Thesis 5

2. Literature Review 7
2.1. Introduction to Recommendation Systems 7

2.2.  Algorithms for Recommendation System 8

2.3.  Existing Video Game Recommendation Systems 11

2.4.  Gaps in Existing Research 12

3. Methodology 14
3.1. Research Design and Data Collection 14

3.2.  Algorithm Development 17

3.3.  System Architecture 20

4.  Implementation 22
4.1. Development Environment 22

4.2.  User Interface Design 24

4.3. Backend Infrastructure 30

4.4.  Algorithm Integration 31

5.  Results 37
5.1. Challenges and Solutions 37

5.2. Comparative Analysis 40

5.3.  User Feedback 43

6.  Discussion 45
6.1.  Strengths and Limitations 45

6.2.  Future Research Direction 45

7. Conclusion 48
7.1.  Learning Process 48

7.2.  Summary of Findings 49

7.3.  Contributions of the Field 49

7.4.  Final Thoughts 50

List of References ol
Appendices 54



List of Tables

Table 1
Table 2
Table 3

Vi

16
17
31



List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Vii

17
18
16
19
20
22
23
24
25
26
26
27
28
32
32
33
34
35
43



Abstract

The video game market has a lot of variety and competition. It is hard for gamers to
figure out a game to invest their time and money into. A lot of the leading video game companies
such as Game Freak, Blizzard, EA, Bethesda, and Activision, created a highly valued reputation
with good games in the past. However, in the present, they are making unpolished/unfinished
games to get more money which people buy because of their high reputation. With an expert
system that suggests games based on user ratings and personalized recommendations rather than
popularity, gamers will have a better experience finding a game they prefer. Currently, there are
a few of these video game recommendation systems either on the video game console or online,
but all of them have flaws to them. These expert systems attempt to recommend games to people
and include many different algorithms to predict and suggest games that match a specific user’s
preferences. However, these current recommendation systems lack personalized
recommendations or lack in the data of games they have thus either giving the same
recommendations to all users or giving the user a console-specific game. To solve this problem
an expert system with personalized recommendations is needed. The system should incorporate a
database that includes a variety of relevant games containing real-world data and put it into a
web application. Then making sure the program worked properly and errors and bugs were
eliminated from the web application. After completing and testing the proposed recommendation
system, the final step was to observe the results and compare the system with other video game

recommendation systems.



Introduction

1.1 Background

One of the biggest forms of media that has been rising in popularity over the past few
decades is video games. From Pong to Elden Ring, video games have changed drastically and so
has the market. In the past, it was mostly Nintendo [20], Sega, and Atari making consoles and
games, but nowadays anyone can make and sell a video game online. In present times, there are
so many video games on so many consoles. You’ve got console-exclusive games, virtual reality
games, mobile games, personal computer (PC) games, handheld games, and retro games, just to
name a few not to mention the multitude of genres that the video games are categorized into. It
can be overwhelming at times just how many games there are out there and finding the right
device that can play them. These games can be very expensive as some games go for sixty or
seventy dollars and games today can have budgets higher than Hollywood movies. Also, there is
the fact that a lot of these games are a large time investment as some games can take over one
hundred hours to beat. So, there comes the problem of a gamer trying to choose a game from the
wide variety of video games that are available to them.
1.2 Problem Statement

Given that average gamers often encounter difficulties in selecting games they are likely
to enjoy, further research is necessary to address this issue. Research should investigate the
underlying reasons for this issue and explore why not all games are equally enjoyable to gamers.
Recent findings indicate that many indie game developers have begun producing highly polished
and well-rated games that, despite their quality, receive less recognition and fewer sales

compared to 'AAA games.' These AAA games, characterized by their high budgets and extensive



promotion by large, well-known publishers, often command more attention and generate higher
sales, even though they may sometimes lack the same level of polish or completeness. Average
gamers often opt for popular games without conducting thorough research due to the
overwhelming variety available. Conversely, games such as Pokémon Scarlet and Violet, despite
their strong sales, received poor ratings from both gamers and critics due to issues related to lack
of polish and the company's rush to release the game for financial gain. Therefore, the objective
is to develop an expert recommendation system that provides personalized suggestions to video
game consumers, enhancing the likelihood that they will enjoy and rate the games highly. Thus
creating a technique-focusued/tool-focusued thesis which is improving upon what is already out
there as well as creating an entirely new tool being a brand new video game recommendation
system.
1.3 Significance of the Study

The computer science world is filled with tons of expert systems whether it be advice or
making decisions in areas such as medical diagnosis like MYCIN and trading on the stock
exchange like TrendSpider. There are also a lot of expert systems used for social media such as
YouTube [30] or TikTok [28] to recommend content to users. These expert systems for social
media use algorithms to recommend to users videos that the user would have a good probability
of liking based on the other videos that the user likes. Most forms of media have some sort of
expert system that recommends the user that media based on their likes and preferences. For
movies and TV shows, there’s Netflix [19] and Hulu [13], for music, there’s Spotify [25] and
Apple Music [2], and for social media, there’s Instagram [15] and TikTok [28]. But, there aren’t
any well-known expert systems for recommending video games. There is Steam [26] which will

suggest games to its users, but it’s only for PC games, not for anything found on consoles. Some



consoles will also have some sort of recommendation system, but again it’s only for games that
are on that console. This works for people who only play on one console or only play on a PC,
but most people either have a PC and a console or multiple consoles. However, many gamers
own multiple devices, including both PCs and consoles. Consequently, there is no integrated
system that provides game recommendations based on the user's entire array of gaming
platforms. There are separate recommendation systems that aren’t built into the console or from
Steam [26] that recommend games similar to something like GoodReads which is a separate
recommendation system for books. As for games, this includes programs/websites such as
Metacritic [17], IGDB [14], and RAWG [23] which contain user and critic ratings of games from
all platforms. However, these systems do not offer the level of personalized recommendations
that expert systems provide. Additionally, many of these recommendations are based on
popularity rather than on detailed ratings, as seen with Metacritic [17]. Consumers face the
challenge of selecting a game from a wide array of options and competition. Even when provided
with suggestions, choosing a single game remains difficult, as it requires a significant investment
of time and money without certainty of enjoyment. Many of these games represent substantial
investments, further complicating the decision-making process for consumers. Nowadays,
leading video game companies such as Game Freak [9], Blizzard [4], EA [6], Bethesda [3], and
Activision [1], have taken over a majority of the video game market creating popular games with
high reputations in the past, but the games coming out to be unpolished, and unfinished with an
expert system that suggests games based on user ratings and personalized recommendations
rather than popularity, indie companies will benefit and so will console games as the only other
major expert system is for Steam PC games [26]. Typically, the average consumer opts for

popular games, often referred to as 'AAA games.' These high-budget, high-profile titles are



produced and distributed by large, well-known publishers. Despite their high cost, these games

are sometimes less polished or incomplete. However, indie games that have similar ratings and

are cheaper aren’t as popular but are just as good. Despite their quality, these games struggle to

generate sufficient sales due to limited advertising and lesser-known reputations.

1.4 Objectives of the Study

This research work aims to achieve the following objectives:

To obtain data of both games and users - This data should contain real-world data and
enough data so that the algorithms can have as much data and information to work
effectively as well as data of all games varying from all consoles.

To find and implement personalized algorithms for the expert system that need to also
work best for the information given and the data sets given and have a high probability of
predicting a game that a user would like.

To implement and visualize the expert system into a program - It will be implemented
into a web application where not only will the results be shown using real data, but new
users will be able to register to add their games and ratings to then see for themselves
recommended games that will be predicted that they’d like based on personalized
algorithms.

To allow users to be able to conveniently track and mark down the games they’ve beaten
and scored as well as games they are interested in, own, or consider to be one of their
favorites.

To allow users to find other games that are similar to their favorite games.

1.5 Structure of the Thesis

This thesis is organized as follows:



Chapter 1 serves as the introductory chapter that introduces the topic at hand as well as the
problem that needs to be solved and its significance and ends with the objectives that need to be
done.

Chapter 2 consists of the literature review that explains the previously existing techniques of
recommendation systems, the algorithms used for recommendation systems, and other video
game recommendation systems out there.

Chapter 3 constitutes the research methodology chapter. It explains collecting the data for the
system as well as implementing the algorithm for the data followed by how the web application
would look.

Chapter 4 presents the implementation of the proposed system. It discusses the design decisions
and process of making the web application as well as implementing the algorithms into the web
application.

Chapter 5 presents and discusses the result and the challenges faced by the program such as
bugs and errors and how they were fixed as well as testing the program out with real users and
obtaining feedback.

Chapter 6 describes and discusses how well the expert system turned out to be compared to
other expert systems for recommending video games as well as ideas on how the systems could
improve.

Chapter 7 presents the conclusions and contributions of this research, besides the researcher’s

final thoughts.



Literature Review

Before starting any large-scale project, one needs to do research and have a plan. The
project started with a lot of research. What needed to be figured out was the algorithms that
needed to be used and how they worked as well as how they would work with the data obtained.
What also needed to be done was to look at other video game recommendation systems and how
they worked as well as their strengths and weaknesses so that one could create a
recommendation system better than what is already out there by taking all their strengths and

avoiding their weaknesses.
2.1 Introduction to Recommendation Systems

The first thing that needed to be figured out was what a recommendation system is, how
it works, and what makes a good recommendation system. In short, a recommendation system
“suggests or recommends additional products to consumers” [29] based on data. These
recommendation systems can be very personalized like Netflix [19] where each user will have
different recommendations based on the user’s data or inputs. Other recommendation systems
such as the Nintendo eShop which uses popularity could be plain in which the recommendations
could be the same for multiple users as the recommendations are based on other data such as the
options data or some third-party data. But it’s not just the data alone that is used to make
recommendations for users, the data is put through numerous algorithms that vary depending on
the data and they are used to narrow down or further personalize the recommendations for the
user. These algorithms can be very complex making the recommendations as personalized as

possible or very simple making the recommendations very plain where every user gets the same



recommendations. So for a good recommendation system, it should be simple, accurate, and

have some form of personalized recommendations. This is a tough system to solve and get right
as it heavily relies on the data. If there is not enough option data or user data, it’s going to be
hard for a recommendation system to produce accurate and personalized recommendations
regardless of the algorithms. On the other hand, the algorithms are essential as well, even if the
recommendation system has all the data it needs, the data needs to work well and fit with specific

algorithms.

2.2 Algorithms for Recommendation Systems

To start the research, the expert system needed proper and personalized algorithms.
Looking for algorithms that would work with a recommendation system and looked into what
other recommendation systems used as algorithms. With help from Dr. Sourav Dutta, he ended
up finding collaborative filtering [14], specifically user-based collaborative filtering which is
where “...new items are recommended to a user based on the similarity measure with other users
who highly rated the similar type of items.” [14]. Following the article that Dr. Sourav Dutta was
a part of (Top-k User-Based Collaborative Recommendation System Using MapReduce), for the
recommendation system, the algorithm (User Similarity (Figure 1)) would pair the user with
another user that has rated the same games and suggests the games they don’t share which is
ranked based on a formula that uses the other user’s ratings as well as the user’s average rating.

The pseudo-code for user similarity would be something like this:

Algorithm 1: User Similarity

Input: userl data, user database

Output: the list of all the data that user2 has that userl doesn't,
sorted by formulas



1: for each user in the user database:

2: user2 <« the user that has the most in common with userl

3: L « the list of all the data that user2 has that userl doesn't,
sorted by formulas

4: return L

(Figure 1: Algorithm 1: User Similarity)

The other algorithm that was looked upon and was interested in implementing was top-k
suggestions (Figure 2). This would take the top-rated games, but it would be a bit more
complicated as it would be from a filtered form of the data. This filtering would be based on
user’s preferences to personalize and narrow down suggestions of games. The pseudo-code for

top-k would be something like this:

Algorithm 2: Top-k
Input: recommendation data and user preferences
Output: recommendations

1: recommendations « recommendation data where recommendation data
contains user preferences and is sorted by ratings
2: return recommendations

(Figure 2: Algorithm 2: Top-k)

Lastly, the Naive Bayes algorithm [10] (Figure 3) was looked upon to further personalized
recommendations by categorizing the users into specific groups and recommending games based
on those groups. The reason for using this algorithm was for its basis in conditional probability.
Specifically to find games with the highest probability that a user would engage with those
games based on the conditions (the games and consoles the user profile contains) a user had.

This is another form of filtering the data, but in this case, it is using individual data to categorize



and sort the individual data into a set group. A good example of this is used in emails as Naive
Bayes [10] would categorize an email as spam or not spam depending on the words that are in
the individual email where previous data is used as testing data to help determine and formulate
what is considered spam email and what is considered a non spam email. In terms of the Naive
Bayes [10] to be used with video games, the first idea was to take individual user data and
recommend games based on genre which is based on the games the individual user has and thus
categorizing users into groups based on what genre showed up the most and showing
recommendations of that genre. That idea didn’t work too well as games have multiple genres
and in the case that there was a tie. So, instead, the groups were categorized by average rating.
To do this, the idea was to use a training data set of users, enumerate the features (games and
consoles the user owns), and pair it with that user’s average rating. Then with new data, it would
categorize a user and predict their average rating based on what the individual user has already,
putting the user in a personalized average rating category. With the user in that category, we’d
then recommend the user games that have that same average rating. The pseudo-code for Naive

Bayes [10] would look something like this:

Algorithm 3: Naive Bayes
Input: userl data and user test data
Output: predicted class

1: probability list of dictionaries « user test data feature
appearance in each category where the category is the list of
dictionaries and the value is the probability

2: predicted class « category with the highest added-up probability
based on userl's data

3: return predicted class

(Figure 3: Algorithm 3: Naive Bayes)

10



2.3 Existing Video Game Recommendation Systems

Looking at other recommendation systems that are out there, they all have their strengths
and weaknesses. The most popular one is Steam [26] which is a video game market for PC
games that will also recommend games. The recommendations use a similar algorithm of
collaborative filtering [14] as it will show recommendations of games based on users like the
individual user. Other recommendations that Steam [26] uses include recommendations that are
similar games to the ones the individual user plays, what’s popular, and sponsored games that
pay Steam [23] to be placed on their front page. Based on similar games that the user likes is a
pretty useful algorithm as it is personalized, but the algorithms based on popularity and
sponsored games aren’t as useful as those recommendations aren’t personalized nor are they
based on any of the data or input from the individual user. The program also only shows
recommendations that are games only available on the platform. This is also relevant to other
video game company stores such as the Nintendo eShop [20], the PlayStation store [21], and the
Microsoft Store [18], as they show games only available to the platform. This is good if the user
only has that one platform, but most of the time users own more than one platform for gaming.
The problem with this is that these online video game stores will only show games that are on the
platform and some games are on multiple platforms. So, sometimes users might see
recommendations of games that they already have on other platforms. Thus some
recommendation systems online solve this problem. Websites like Metacritic [17], RAWG [23],
and IGDB [14] show all games on all consoles. Especially IGDB [14] which includes fan-made
games and ROM hacks. For Metacritic [17] and IGDB [14], the games are rated by users and
critics alike and are ranked and shown based on the rating of the game. Metacritic [17] takes it a

step further allowing the user to filter the data by release year, platforms, and genre to narrow

11



down the recommendations more and make it more personalized as it is determined by the user’s
preferences. As for RAWG, instead of a normal number rating scale, it has a categorized rating
scale of either exceptional, recommended, meh, or skip, and similarly to Metacritic [17], users
can filter the rated games. These filters include tags (SinglePlayer, Multiplayer, etc.), platform,
release date, and being able to order it by either popularity, date added, name, release date, and
average rating, however, you can only select one per category, unlike Metacritic [17] where you
can select multiple. Overall these websites are good as they have all games from all consoles, but
they don’t exactly recommend games as they just show the games with the highest ratings and

thus have no personalized recommendations.

2.4 Gaps in Existing Research

After looking at the other recommendation systems out there for video games and seeing
their strengths and weaknesses, what was found was what makes a good recommendation system
and what was to become of a new recommendation system to improve the likes. Starting with the
data, what was found was that one needed a good video game database that contains lots of
games from every console and that each game has lots of information about it including details
such as release date, platform it is on, genre, rating, and game mode (SinglePlayer, Multiplayer,
etc.). As for the user data, what was known is that what was needed was at least information
about what consoles the user owns and what games the user has already to eliminate
recommendations of games that the user already has and to show only recommendations of
games that are on consoles the user owns. As for the recommendations/algorithms, having the
recommendations based on user ratings seems to be the most popular and best idea for getting
the best results. Also having the user be able to filter the data by allowing the user to enter their

preferences is a good idea to further personalize the recommendations. This is shown as video

12



game companies' online stores’ problem is that it shows only games available to that platform
and shows recommendations that are paid for by other companies and as for recommendation
system websites, they show every game but don’t have personalized recommendations. So, for
the recommendation system, the goal was to make a system that solves all of these problems by

showing every game and producing personalized recommendations.

With the algorithms decided and the recommendation system planned out, it was time to
start the project. To do so, the plan was to find a valuable game database, make a simple user
data set, code and implement the algorithms, and then design the web application to add
everything in. Later on, what was added were some other features and data that were scraped
from the web for real-world user data and ratings that were used to enhance the algorithms and

add more depth to the project.

13



Methodology

The process of making an expert system starts with finding the data. Scavenging the web,
what was found was a good enough API to obtain a very strong game database that contained a
lot of data. The other thing at hand was to scrape data from Metacritic [14] to obtain real-world
user data which consisted of games, consoles, and ratings. Once the data was found there was
also the fact of cleaning the data and preparing it to be a readable format for both a web
application and for the algorithms. For the algorithms, what ended up being used were three
different kinds: top-k, collaborative filtering, and Naive Bayes [11], each of which would
personalize recommendations and rank them from most likely to least likely that the user would
like the game recommended. Afterwards, the web application needed to be made being both the
backend and the frontend. Using FastAPI [7] for the backend and React [24] for the frontend, the
algorithms were put into the backend and the frontend took user input and displayed the results.
Later on, user registration and other pages were made to make things more accessible and to

allow new user profiles.
3.1 Research Design and Data Collection

To start, a large data set of games was needed. One that had a strong amount of
information on each game. What was wanted was a data set that had at least the game name,
what platform it was on, what genre(s) it was, what kind of game it was (Singleplayer,
Multiplayer, etc.), the price of the game, and how long it took to beat the game. Looking through
the web and searching through a bunch of different data sets from websites like Kaggle and such,
most of the data sets either didn’t have enough data or didn’t have enough information on each

game. So, after doing some more research what was landed upon was the API of IGDB [14]

14



which is one of the online websites rating video games, but also one of the largest video game
databases. After obtaining the API code, one was able to access the IGDB database through
Python. At first, it was hard to know how to use it, but after looking through the endpoints,
extracting the data was easy and obtaining exactly what was wanted. What ended up getting
extracted was the game’s ID, name, genres, platforms, similar games, rating, game modes, and
rating count which were all endpoints for the game path. Which for the most part was everything
that was wanted except for how long to beat the game and the price of the game. Extracting the
data was a bit tricky as the data set contained over 250,000 games, but the request only allowed
500 games at a time, so by putting it into a for loop and changing the ID numbers obtained by
500 every loop, the data was able to be obtained. Also, the data was formatted into a JSON string
which ended up being converted into a pandas dataframe. A little more research was done to see
if the specific data that was missing could be obtained which were the price and how long to beat
the game, but most of the data sets found were small compared to the 250,000 games that were
from IGDB [14]. Where some data sets only had around 5,000 matching values, so what ended
up happening was that that data was not included. As for the data obtained, the IGDB data frame
was created and had columns that were filled with data that were in the format of lists of
dictionaries containing ID numbers for each name as the key and the information as the value.
Each value was extracted and was made into a list of those values instead as the key ID number
was not needed. Also, to clean it up, the data was put in game ID order as well as removed all
missing values and games that had a rating of 0. With that, what was ended up with was a clean
data set of 22,476 games as a lot of them either had missing values or were shovelware games
(low-budget, poor-quality video games, released in the hopes of being purchased by

unsuspecting customers) (Table 1).

15



id game_modes genres  involved_companies name platforms rating release_dates similar_g:
Shooter, Eidosinteractive, Mar21,2000, Thief:TheDarkPn
0 1 Singleplayer Simulator,  LookingGlassStudios, Thiefl:TheMetalAge PC(MicrosoftWindows) 86.298807 2000, Thief:DeadlyShac
Adventure SquareEnix May22,2012
. LookingGlassStudios Thiefll:TheMeta
Simulat ' Nov30,1998,
1 2 Singleplayer imuator, EidoslInteractive, Thief:-TheDarkProject PC(MicrosoftWindows) 86.579238 oV, Thief:DeadlyShac
Adventure . 1998
SquareEnix 1
Shooter, lonStorm, I\j:ﬁfggg: Thiefll: TheMeta
2 3 Singleplayer Simulator, EidosInteractive, Thief:DeadlyShadows PC(MicrosoftWindows) 82.006129 Marzglzom' Thief:TheDarkPn
Adventure SquareEnix May25,2004...
Feb25,2014, .
. ! Thiefll: TheMeta
. Shooter, EidosMontreal, X . . Feb25,2014, N
3 4 Singleplayer Adventure SaquareEnix Thief PC(MicrosoftWindows) 70.253640 Feh25 2014, . EI:V':;:
Feb25,2014... 0
Role- BioWare, S:;;:'fg;:' Borderlal
4 5  Singleplayer . BlacklsleStudios, Baldur'sGate Linux 86.002845 ! ! PokemonS
playinoGeck InterplayEntertainm N OrientalBlue:Ao
play Oct14,2015 ’
Shooter RemedyEntertainment, 83523331 ' Don'tKnockT
22471 269135 Splitscreen ' EpicGames, AlanWake:TheSignalRemastered PC(MicrosoftWindows) 57.248435 ! ! TheDarkO:
CEIVRLE NitroGames, D3 EEAN Immortal:Uni
o Oct05,2021... .
Oct05,2021,
Shooter, RemedyEntertainment Oct05,2021 Masoc
22472 269155  Singleplayer ! N ' AlanWake:TheWriterRemastered PC(MicrosoftWindows) 60.131088 ! ! Don'tKnockT
Adventure EpicGames 0ct05,2021, HousaofCaravs
0ct05,2021... ¢
Simulator, Masoc
22473 269849  Singleplayer o diel ReflectStudios DeadSignal PC(MicrosoftWindows) 78.542773 Oct20,2023 AnotherBrickinthe
SupremeF
RustyLaket
22474 272249  Singleplayer Puzzle, Indie FLEB 20SmallMazes PC(MicrosoftWindows) 71.797753 Feb16,2024 Rustylake:R
Don'tknock
Simulator, UnclaimedV
22475 274920  Singleplayer Strategy, NoktaGames SupermarketSimulator PC{MicrosoftWindows) 60.424163 Feb20,2024 Project
Indie AnotherBrickin

22476 rows x 9 columns

(Table 1: clean game dataset)

After the research of finding the game data set, making the user data set was the next

step. At first, it was simple, the data set contained the columns: userID, username, password (for

the web application), backlog (games that the user wants to play/own), beaten_games (games the

user has beaten), fav_games (the user’s favorite games), consoles (consoles the user owns), and

ratings (ratings the user gave for each game they beat). The database was filled with just a few

example users that were made up first to test how it would work with the algorithm and the game

database (Table 2).

16



userlD username password backlog beaten_games fav_games consoles ratings

. AHighlandSong, XenobladeChronicles, Switch, {'XenobladeChronicles': 95,

0 55 ndamato password DavetheDiver, Balatro LiesofP CrossCode PS4, PG '‘CrossCode' 92
Personad, Personas Switch,

1 3456 Userl password DragonQuestXl:EchoesofanElusiveAge, . . FinalFantasylX PS4, PS1, {'FinalFantasylX': 89}
FinalFantasyX pSo

Switch,
EarthBound, PaperMario:.TheThousand- PS4, PS1, g %
FinalFantasyVIlRebirth, YearDoor, PS2, GBA, |\ hemaroTheThousand
Mother3 XenobladeChro... GameCube, o

SNES, PC

ChronoTrigger, Personab, SeacfStars,

2 3495 User2 password ChainedEe...

(Table 2: basic user data set)

3.2 Algorithm Development

The first algorithm that was used, was one that Dr. Sourav Dutta used in his project
which is collaborative filtering. He used the algorithm to predict movie titles that users would
like which works well for the data set of games since it was a similar data set. However, his code
was using MapReduce while the code for the game data set was using Python. So, what ended up
happening was the translation of the code to Python and making the functions:
genAverageRating, genUserSimilarity, and genRecommendation (The ones Dr. Sourav Dultta,
used). What genAverageRating (Figure 4) did was take all of the users’ ratings add them up and
divide them by the number of ratings to get every user's average rating which ended up stored in
the data frame adding a new column called “average rating” with pseudo code that looked like

this:

Algorithm 4: genAverageRating

Input: user database

Output: none, just adding a new column being the average rating to
the user database for each user

1: for user in user database:

2: for rating in ratings:
&34 sum « sum + rating

17



4: number of ratings <« number of ratings + 1
5: user's average rating column <« sum/number of ratings

(Figure 4: Algorithm 4: genAverageRating)

The genUserSimilarity function (Figure 5) took the specific user and compared that user to all
other users to find the one that has the most similar taste which was to find the user with shared
beaten games, as well as using a formula to find the user with the highest similarity score with

pseudo-code for genUserSimiliairty looking something like this:

Algorithm 5: genUserSimilarity

Input: userl and user database

Output: max similarity score and index of user with the highest
similarity score

1: max similarity score « 0

2: for user in user database:

3: L « beaten games user and userl have in common

4: sh « O

5: sdi « @

6: sdj « ©

7: similarity « ©

8: for each 1 in L:

9: sn « sn + (rating of 1 from userl) * (rating of 1 from
user)

10: sdi « sdi + (rating of 1 from userl)”2

11: sdj « sdj + (rating of 1 from user)”2

12: similarity « sn/(sqrt(sdi) * sqrt(sdj))

13: if similarity > max similarity score:

14: max similarity score « similarity

15: index for user with the highest similarity score «

user's index
16: return max similarity score and index for user with the highest
similarity score

(Figure 5: Algorithm 5: genUserSimilarity)

18



Then with the genRecommendation function (Figure 6), the specific user and the best pair for
that user are taken from the genUserSimilairty function, and by using a specific formula that uses
the user’s average rating, the beaten games that the paired user beat in which the specific user
hasn’t beat are recommended to the specific user and are ranked based on the paired user’s

ratings of those games with pseudo-code for genRecomendation looking something like this:

Algorithm 6: genRecomendation

Input: userl, index for user with highest similarity score, max
similarity score, the average rating of userl, and user database
Output: recommendations

1: recommendations <- {}
2: sn « 0

3: sd « 0

4:

user2 <- user whose index is that of the index for user with
highest similarity score
5: for each beaten game that user2 has that userl doesn't have:

6: rating < rating of beaten game from user2

7: sn « sn + (rating - average rating of userl) * max similarity
score

8: sd « sd + max similarity score

9: recommendations[beaten game] « average rating of userl + sn/sd

10: recommendations « recommendations sorted by value
11: return recommendations

(Figure 6: Algorithm 6: genRecomendation)

After testing and tuning to make sure the user-based collaborative filtering [14] worked well, it
was time to work on another algorithm which ended up being top-k. This algorithm would take
user input of their preferences and based on those preferences the algorithm would return games
of those preferences and be ranked based on the ratings found in the games data frame. This

ended up being the function “filter dataframe” (Figure 7). This function asked for what genre(s)

19



and game mode(s) the user liked as well as what consoles the user owned and based on those
answers, the function would output games that contained the specific genre(s) the user chose, the
specific game mode(s) the user chose, and the games that were only on the console(s) that the
user owns that the user imputed and as said before the games are ranked based on the ratings that

the game data set has where the function of filter_dataframe had pseudo-code like this:

Algorithm 7: filter_dataframe

Input: game database, genres, game modes, platforms, number of
suggestions, and beaten games from userl

Output: filtered game database

1: filtered game database « game database only containing genres,
game modes, and platforms as well as excluding all games from beaten
games from userl and is sorted by rating and only showing the top
results based on the number of suggestions

2: return filtered game database

(Figure 7: Algorithm 7: filter_dataframe)

3.3 System Architecture

With these two algorithms made and implemented into the data sets, it was time to work
on the web application. At first, using Flask [8] was the first idea as it was a popular Python
backend, so it would be easy to bring over the algorithms since they were also in Python. But in
the end, FastAPI [7] seemed like a better option as it worked better with large amounts of data
and it also used Python. Learning FastAPI [7] was a bit tough as it is fairly new, so learning the
etiquette of the language was a bit of a learning curve, but after a bit of practice, the next step
was to add the code of the algorithms into it. Once that was done, the data sets had to be
implemented into FastAPI [7] as well. To do this PostgreSQL [22] was used and a bit of Python

code was used to store the two data sets so that the FastAPI [7] backend can access it. However,

20



the FastAPI [6] code receives the datasets as JSON strings which are then converted back into a
pandas dataframe. With this, the next step was to test the backend to see if it outputted the
correct information and once it did, it was time to move onto the frontend. With the frontend of

the code, React was used which used JavaScript and CSS.

21



Implementation

4.1 Development Environment
At first, a simple home page was made (Figure 8) which had two buttons: the
collaborative filtering button and the top-k suggestions button which would redirect to a different

page based on the button that was clicked.

Welcome 1o Game Genie

Based on Users Like You Based on Preference

Games Similar To Your
Favorites

Logout

Based on Average Rating

(Figure 8: home page)

For the collaborative filtering page (Figure 9), the user would input a username and the page

would suggest games based on the user-based collaborative filtering algorithm.

22



Based on User Similariiy

Welcome, tukumalu!?

Recommendations:

«Celeste O kely fo enjiow) Add to Backlog
+Fallout:NewVegas Add to Backlog

+« TheLegendofZelda: BreathoftheWild Add fo Backlog
«HollowKnight Add to Backlog

. SuperMario64DS Add to Backlog

« SuperMarioSunshine Add fo Backlog

« TheLegendofZelda:OcarinaofTime3D Add to Backlog
«GenshinImpact [Add to Backlog

. TheLegendofZelda:Majora'sMask3D Add fto Backlog
« SuperMario3DWor ld+Bowser ' sFury
Add to Backlog

(Figure 9: collaborative filtering page)

As for the top-k suggestion page (Figure 10), the user would click on the checkmark boxes of the
genre(s) and game mode(s) as well as the console(s) they owned as well as adding an input box

for the user to enter how many suggestions they’d like.

23



Top—-k Suggestions

What kind of game mode{(s) do you

like?®
H BattleRouale

n MassivelyMultiplayer
Online {MMD>

W Singleplayer

B Co-operative
HM Multiplayer

M Seplitscreen

What genre{s) do you like?
N Adventure N Arcade
W Card&BoardGame

n Hackands lash/
Beat' emup

M Fighting
N Indie

W MOBA B Music
W Pinball

W Point-and-click

W Platform
N Puzzle
B Buiz/Trivia MW Racing

RealTimeStrategu(RTS

n ) W Role-playing(RPG)

N Shooter
N Sport

N Simulator
W Strategy

n Turn-—

i basedstrategu(TBS>

W VisualNovel

On what console{(s)?
+ NintendoGameCube + PlayStation3
v PlauStation2 v Nintendot4
¥ Nintendo3DS ¥ NintendoDS
¥ Xbox ¥ Xbox360
¥ GameBoyAdvance ¥ PlayStation
¥ ¥boxOne VWil

¥ NintendoSwitch ¥ PC(MicrosoftWindows)
¥ PlayStationVita ¥ PlayStationPortable

¥ PlayStation4d

Number of suggestions:

(Figure 10: top-k suggestions page)

4.2 User Interface Design

Once the home page and algorithm pages were done and working, the next step was to
make a user login page (Figure 11) which would be the first page and would only move onto the

home page if the user entered a username and matching password that was in the user data frame.

24



Login

Username:

Login

Register

(Figure 11: login page)

With this data, the decision to remove the input box for the collaborative filtering page was made
and was replaced with the data based on the username that was entered for the login page. After
that, a simple profile page was made (Figure 12) that showed the user’s data and could be

accessed through the home page as well as a register page for new users to register(Figure 13).

25



Profile Page

tukumalu

(Figure 12: profile page)

Register
Username
Password

Search For Game To Add:

Add to Backlog Add to Beaten Games

Backlog A

Beaten Games 4

Favorite Games 4

Search For Console To Add:

Consoles 4

Register

(Figure 13: register page)

26



Now the register page would be for new users as it would ask for a username, password, and
games and consoles to add. The games to add section would have an input box that asked for a
game and then the user could select whether to add that game to their backlog or their beaten
games list if it was a valid game found in the game database. If the user added it to their beaten
games list, the program would ask the user how they would rate the game and if it were one of
their favorite games or not, and if it was, the game would also be added to the list of their
favorite games. As for the console input box, the user would enter the console(s) they had
individually and if it was a valid console from the game data frame, it would be added to the
user’s console list. This valid console list was made by finding all the unique values from the
platform column in the game data frame. Similarly, the edit profile page was made (Figure 14)
which could be accessed through the profile page where users can add or remove games from

their beaten games, backlog, or favorite games list.

Edit Profile

Username

Tukumalu

Search for game:

Add to Backlog Add to Beaten Games

Backlog v
Beaten Games v
Favorite Games v

Search for console to add:

Consoles v

Update Profile

(Figure 14: edit profile page)

27



Afterward, another page was added called the “SimilarGamesPage” (Figure 15), this page would
take the user’s favorite games and upon clicking on one of them the page would show games that

are similar to that game which is stored as one of the columns in the games database.

Similar Games

Your Favorite Games

« NoMoreHeroes2!: DesperateStruagle

Games Similar to
NoMoreHeroes2: DesperateStruggle

«Figment Add to Backlog

« ForgottonAnne | Add to Backlog
+«CodeVein | Add to Backlog

. Tanzia Add to Backlog
«WanderlustAdventures | Add to Backlog

« ChildrenofMorta Add to Backloga
.Citadel:ForgedWithFire  Add to Backlog
.Omensight Add to Backlog

« Warhammer: Chaosbane | Add to Backlog
.DragonBallZ:Kakarot | Add to Backlog

(Figure 15: similar games page)

Once that was done navigation buttons were added like a home button, logout button, edit profile
button, and registration button so that the user can navigate between the pages. What was also
added were other buttons such as add to backlog which would show next to the suggested games
for users to keep track of and add games that interested them based on the suggestions. The
button would also appear as “remove from backlog” if the game suggested was already in their
backlog. As well as adding a learn more link to each game to increase the simplicity for the user

as clicking the link will direct the user to a Google search of the game with the added word

28



“video game” so that it shows the information about that game for the user if they’re interested.
The checkboxes for the top-k suggested page have also changed the checkboxes as only the
console checkboxes the user owns appear. Also for simplicity, an autocomplete window was
added for both the search games and search consoles input box so users can see which games and
consoles are valid as well as not having to type the full thing but they can click on the full title
instead. And for the top-k suggestions and similar games page, if the game was already in the
user’s beaten games list, the change was made that that game won’t show as a suggested game as
it is a game they already beat just like how the user similarity page won’t show a game the user
already beat. As for if they are already in their backlog, the game will show, but the button next
to it will appear as removed from the backlog. As for the edit profile page, things were made a
bit more simple for adding games to favorites and removing games as the remove button was
turned into a trash can and the add to favorites button was changed to be an outline of a star and
if the game is in the list of their favorite games, the star would be yellow. Also for the backlog
list, a checkmark button was added which is for users to click when they beat the game as the
program will ask for a rating and if it is one of their favorite games as well as removing it from
the backlog list and adding it to the beaten games list as well as adding it to the rating list and the
favorite games list if the user clicked ok for if it was their favorite game. A few bugs were found
which were shortly fixed. These included fixing it so that users can’t have a game both in their
beaten games and backlog list, fixing the issue that if a user removes a game from their beaten
games list for whatever reason, it would get rid of the rating as well, as well as only showing
suggested games that the user can play (games that can be played based on the consoles the user
owns). Then some formatting and changes to the style of how the web application looked were

made. Using Tailwind [27] and other CSS libraries, the application now had more of a video

29



game look to the web pages and everything was made sure to be working and looked right. Once
that was all done what was left was to set out to find real-world user data to test the algorithms

on real data.

4.3 Backend Infrastructure

To obtain the real-world data, Metacritic [17] seemed like a good place to find individual
user rating data as IGDB [14] didn’t have that data. Going through Metacritic [17] the first idea
was to try and obtain the data by hand by taking random users and using the register page of the
web application and marking down the username, beaten games (games the user rated), ratings
for each game, and the consoles each user owned. This worked at first, but some of the users had
over 100 reviews which would’ve been very time-consuming to mark down all those reviews.
So, instead, the other way was to scrape the data from the web. To do this, the tool Chrome
WebDriver [5] was used which took the exact URL of the user page and by searching through
the CSS selectors the program would find and scrap the necessary info of the user. With that, the
data would then be added to the user database which would now be filled with real users as the
fake example users were removed. However, it wasn’t that easy. The main problem arose which
was the fact that the Metacritic [17] data wasn’t the same as the game data set. Things like
console names were named differently and were all in caps as well as game names with accent
marks such as Pokémon didn’t have those accent marks and the fact that Metacritic [17] has a
scoring scale of 0-10 while IGDB [14] has a scoring scale of 0-100. So, to solve these problems
the game database was edited and corrected by removing the game tile’s accent marks, matching
the Metacritic [14] console names from the real-world data to the game data set console names,
and multiplying the rating score by ten to match that of IGDB ratings. With that, there was still

one other problem that needed to be solved which was that the program wasn’t getting all the

30



games and reviews. This was because if the user had a lot of reviews, you needed to scroll to the

bottom to load all the reviews which was manageable with a function that made the webpage

scroll to the bottom to load everything. The last thing that was done was to make sure the game

recorded was in the game data set as not all the games on Metacritic [17] were in the game’s data

set. With all of that 100 real-world users were obtained and to clean it all up duplicates of

usernames were removed as well as for each user if they had duplicate game reviews, they were

also removed (Table 3).

userlD

username password backlog

beaten_games fav_games

consoles

a7

30ba1c71-7cfd-4168-bf0b-79d645ce3300

ad4674ec-ebed-46ec-8d87-
d1c69b2a092d

76c07864-6e85-4430-8531-06f47aa9d962

3b235579-
eebf-496b-9e91-91bb7bcad3d7

['TheLegendofZelda:TwilightPrincess',

tukumalu  password 1] ‘Neighbo...

['HollowKnight',
Bagubuns  password 0 “ThelLegendofZelda:Majora'sMas...
Kino1337 password 0 ['Castlevania:SymphonyoftheNight',

'MetalGearS...

[ TheLegendofZelda: TearsoftheKingdom',

igorbarazzetti  password 0 ‘Prince

['DiscoElysium:TheFinalCut',

eadf3390-fdbb-4f3c-b703-4b864720da7c ElderMist password 0 ‘PrinceofPersia:T...
2083553f-5¢7d-4885-aab5-4fcf96286eb6 lazatoy password 0 [ISimEeiySocltiect GrandThefthi;V.
g - ¥ § . ['GranTurismo8', ‘MaxPayne3',
B6d9e1dcf-979b-40ac-bbfa-f3adeea7031c  joaopontesvaz  password 0 ‘AgeofEmpireslll...
d815121a-5560-4144-8e80- artoldtonelic sword 0 ['PrinceofPersia:TheSandsofTime',
€283c4257d19 pas; ‘MetalGearSo...
ad02c406-142b-4aad-B2a8-eca20b2alefd XRAIN  password i [Batman:ArkhamCity', ‘Singularity’,
Vanquish...

5a19a5e1-6ac4-4d78-89cf-45c7aead17c8 bestbloodyday —password 0 [BatenKaitoeOrigins}

100 rows x 9 columns

4.4 Algorithm Integration

‘TheLegendofZelda:Twili...

(Table 3: 100 real users data set)

31

0

=

0

['NintendoGameCube',
'PlayStation3’,
'PlayStat...

['NintendoGameCube',
'Nintendo64',
‘Nintendo3D...

['PlayStation3’,
'PlayStations’,
'NintendoB4',...

['Nintendo64"',
'NintendoSwitch’,
'PC(Microsoft...

['PlayStations',
'Nintendo64',
‘XboxOne', 'Unk...

['PlayStation3',
'Nintendo64',
‘Nintendo3DS/, ...

['NintendoGameCube',
'PlayStation3’, "Wiil',

['Nintendo64',
'PlayStation’,
'PC(MicrosoftWin...

['NintendoGameCube',
'PlayStation3’,
'PlayStat...

['NintendoGameCube',
'PlayStation2’,
‘Nintendo...

{'NieRRe

{'Celes

{"Undert

‘Neec



With the real-world user data, the user database was updated to be that of the 100 real-
world users, it was tested with the web application and was made sure that everything was
working properly. Once that was done, with the help of Dr. Sourav Dutta, another algorithm was
decided to be added which was the Naive Bayes algorithm. The first step for this algorithm was
to encode all categorical data into numbers. In Python, each unique feature the user had (games
and consoles), was encoded by giving it a specific number which was made into a function called

create_feature_vectors (Figure 16) which had pseudo code like this:

Algorithm 8: create_feature_vectors
Input: user database
Output: feature vectors and targets

1: unique games « insert all unique games from user database

2: unique consoles « insert all unique consoles from user database
3: feature vectors « encode each unique game and console with a
different number

4: targets « all average rating appearances

5: return feature vectors and targets

(Figure 16: Algorithm 8: create_feature_vectors)

Once every user’s data (the real-world user data scraped from the web) was encoded, it was time
to split the data into test and train sets with the test set being twenty percent and the train set
being eighty percent. Once that was done, using the training data, the prior probabilities were
calculated which meant the probability of the average rating data based on the test set a function

was made called calculate_prior_probabilites (Figure 17) which had pseudo code like this:

Algorithm 9: calculate prior_probalities
Input: targets
Output: prior probabilities

32



1: average rating, count « all unique average ratings with their
respective count appearance

2: total « size of targets

3: prior probabilities <« average rating: count/total

4: return prior probabilities

(Figure 17: Algorithm 9: calculate_prior_probabilities)

Prior probabilities was a dictionary of values where the key was the unique average rating
category and the values were the probability of that average rating category which was calculated
by the number of users that had that average rating divided by the number of users which was 80
since it was the training data. Once that was calculated, the next step was to calculate the
likelihood of the training data, this was done by counting the number of times a unique feature
(game or console) appeared in each average rating category plus one divided by the number of
users in that average rating category plus the number of unique average rating categories which
was made into a function called cacluclate_likelihoods (Figure 18) which had pseudo code like

this:

Algorithm 10: calculate_likelihoods
Input: features and targets
Output: likelihoods

1: likelihoods « {}

2: classes « unique values in targets

3: for class in classes:

4: total _count « number of instances class appears in targets

5 for feature in class:

6 feature count <« number of times feature appears in class
7 for value in feature count:

8: likelihoods « (feature count[value] +1) / (total count +
size of classes)

33



9: return likelihoods

(Figure 18: Algorithm 10: calculate_likelihoods)

The reason for the plus one for likelihoods is for Laplace smoothing which is to make sure the
probability is never zero. With this information, the average rating for new users was able to be
predicted. To do this the first step is to go through every average rating category and within that
go through every feature this new user has. If the feature the new user has is in the average rating
category, the probability is calculated by multiplying the probability of that average rating
category (prior probability) by pi and then by the probability of that feature in that average rating
category (likelihood). The probabilities are then compared to find the highest probability in
which the user’s predicted average rating will be the average rating category with the highest
probability which was made into a function called predict (Figure 19) with a pseudo-code like

this:

Algorithm 11: predict
Input: userl's features, priors, and likelihoods
Output: predicted class

1: user probability « -1

2: max probability « -1

3: predicted class <« none
4. for class in priors:
5 probability « priors[class

6 for feature in userl's features

7 if feature is in likelihoods[class]:

8: user probability <« probability * pi *
likelihoods[class][feature]

9: if user probability > max probability:
10: max probability < user probability
11: predicted class « class

34



12: return predicted class

(Figure 19: Algorithm 11: predict)

Once that was done, the mean squared error was tested which was roughly around 13.67% which
was a bit high. So, after testing some things out, what was found was that rounding up the
average ratings of the data to the nearest whole number drastically lowered the mean squared
error to 6.03%. After getting the ability to predict a user’s average rating, it was now time to
apply that to the web application. With the predicted average rating of a new user, using the
game dataset, the web application would recommend games that had the same rating as the
predicted average rating and be sorted by the number of rating scores (popularity) and would be

displayed as the Naive Bayes page (Figure 20).

Based on Average Rating

Welcome, tukumalu!?

Recommendations:

« MakaimuraGaiden: TheDemonDarkness fAdd to Backlog
«Picross2 fAdd to Backlog

« FatalFrame:MaidenofBlackWater Add to Backlos
.Picrosse3 Add to Backloa

These are all the results.

(Figure 20: Naive Bayes page)

35



The web application would also ask the user for the number of suggestions (top-k) before
showing the results similar to the top-k algorithm used to recommend games based on

preference.

Once that was done, the project objectives were complete. With two real-world data sets
(game data set and user data set), three algorithms (collaborative filtering [14], Naive Bayes [11],
and top-k), and a user registration, profile, and navigation system (web application) the project
had a lot of data and moving parts to it. The next step to do was to test the application for bugs
and errors and to fix any of those bugs and errors as well as have real users test the application

and see if it was doing its job correctly and accurately.

36



Results

After obtaining the data, making and implementing algorithms for that data, and putting it
out into a web application, the project was complete in terms of functionality. What was left was
to test it out, see and figure out if the project had any bugs or errors, and see how well the project
works. Testing out every web page, and every algorithm, and testing it with the real user data

obtained.
5.1 Challenges and Solutions

Starting with the login page, it was tested to see if all users could log in and only log in
with usernames that were in the user data set (using the real-world user data set) with the
matching password for that username. To do so, it was checked to see if a username using a
different user’s password would work, but luckily it didn’t. Then moving on to the register page,
it was checked to see if a user could register with the same username as one in the user data set
which it could at first, but after making a change of not allowing a new user to put a username
that was already taken by giving the user an error message when the user clicked on register
allowing the user to not register if the username is already taken. As for the password part, the
issue where the user could register without a password by having the program put the typing
cursor to the password section if the password was blank was fixed by not allowing the user to
register without a password. Moving on to the adding games section, the problem of if a game
was in the beaten games list couldn’t appear in the backlog list and vice versa was fixed. Also
the problem of if a game was taken away from the beaten games list, it would get rid of it and its
rating in the rating list as well as get rid of it in the favorite games list if it was in the favorite

games list was fixed. Not having a game that can be in the backlog and the beaten games list

37



prevented the problem of a game from being in the favorite games list and the backlog list. As
for the console input and list, the autocomplete window was made simpler where the game
search would autofill the title and then the user would click on whether to add the game to the
backlog or beaten games list, for the console, since there wasn’t an option when the user clicked
on the name the program would then just automatically add that console to the list instead of
filling in the input section and then clicking add. Also for simplicity, all the lists were made to be
drop-down menus that appear closed at first to make things less cluttered especially if the user

has a lot of games and consoles to add to their profile.

Moving on to the home page, all the navigation was checked to see if it worked which it
did so there weren’t any problems there. Then for the collaborative filtering page, if the user
didn’t have any or enough games rated in which case it wasn’t matched with a user, the program
would tell the user to rate more games. Also, since each game has a score based on the formula
for the suggestions, a little note to the side of the top game was added saying the user would
most likely enjoy this game and the game at the bottom saying the user would be least likely to
enjoy this game. As mentioned before each game had the button add to backlog, and when the
user clicked on the button it would say remove from the backlog. This worked, but when the user
would add to the backlog and then come back to the page, it would say add to backlog again
which created the problem of adding the same game to the backlog. This was also the case for
the other pages and to solve this problem check was made in the code where when the user
clicked on the page the program would first check to see if the game was in the user’s backlog
and if it was the button would then first appear as remove from backlog instead of add to the
backlog. Then for the based on preference page, there was a problem where games that the user

had beaten would show up. This wasn’t relevant for the collaborative filtering page since it

38



would only show games the user hasn’t beaten by showering only games that the paired user has
beaten that the other user hasn’t. So to solve this problem game suggestions that the user has
already beaten were removed as well as if they had it in their backlog as well. This problem
would also be solved for the other pages as it had a similar problem. Other than that, the based
on preference page worked well at filtering the data frame and showing the number of
suggestions. Then based on games similar to the user’s favorite games, at first all the games were
shown, but that didn’t work well or efficiently as the user should be able to see which games
were similar to which specific favorite game. To do so cleanly and efficiently, a list of favorite
games was made, and when a user clicked on one, the user would be presented with similar
games to that specific favorite game. Then for the Naive Bayes page, the only problem was that
if the user entered a higher number of suggestions than the number of suggestions only available,
the program would only show the maximum amount it has. So to fix this problem, a message at
the bottom of the page saying this is all the suggestions available was also added to the
preference page even though that error wasn’t as common for that page. Then for the profile
page, the only thing that changed was making the lists drop-down menus to make things look
cleaner especially if the user had a long list of games and consoles. As for the edit profile page,
one problem was that some of the game titles were a bit long and moved some of the buttons
which was fixed by cutting off the title to “...” after 44 characters. Since some games had these
long titles, the buttons were also made simpler. Instead of having a button that said beat it for a
game in the backlog to add it to the beaten games list, a checkmark button was made, and as for
the remove button, a trash can button replaced it, and lastly, to add a game to favorites, a star
button was made and would first appear as an outlined star, but when clicked on would add the

beaten game to the favorite games list as well as appear as a filled out yellow star. The edit

39



profile page would also have the problems that the register page had solved as well such as a
game being in the backlog and beaten games list or a game being in the favorite games list and

not in the beaten games list.

5.2 Comparative Analysis

With those changes, the web application was much more efficient, cleaner, and more
accessible as well as not having any problems for users. So, then it was time to observe the
results that the web application had to offer. First checking the user similarity page, the
algorithm seemed to be working, the user was being matched with another user that had some
matched, but not all matched beaten games. The program then shows and ranks the games based
on the formula. The page and formula are similar to that of Steam [26], but as said before, for
Steam [26], the games shown are only Steam games. As for the program, the game suggestions
are based on a wide variety of games including downloadable content (DLC) and modded
games. The games suggested are personalized and ranked, but just like any other suggestion
system it is subjective to the user, this algorithm narrows it down and has probabilities of
whether the user would like it or not. One of the things that could be changed for this algorithm
and the others was whether or not to show games that the user can play (games only that the user
can play based on the console(s) they have), but after thinking about it the decision was to not do
this. This was because it is guaranteed the user has a computer as they need one to access the
web application. With this information, users could play most if not all games unless it is a
modern-day console exclusive. This is because things such as emulation exist. Users can play
almost any game by emulating a console and finding a safe way to find the game they want and
if they can’t emulate the console that the game is on, it is most likely to be on Steam [26]. Plus a

lot of consoles are also backward compatible meaning one console can play older games from

40



other consoles. So, by keeping games that are on consoles the user doesn’t have, there is a highly
likely chance they can play it on the computer they have either through emulation or Steam [26]
or through backward compatibility from a console they have. Plus the fact that a lot of modern-
day consoles and Steam [26] have remakes or ports of games from older consoles. So, with that,
it was decided to keep all recommendations and even if they can’t play it, they can find out they
can’t play it and see there are plenty of other suggestions. Also based on the preferences page,
this eliminates the problem as it will only show games that the user owns if they only want
games they can guarantee to play. As for the preference page, the program would filter and show
suggested games based on the user’s preference of game mode(s), genre(s), and platform(s) and
would also show suggestions that were ranked based on the game database’s rating. Unlike the
collaborative filtering page, these suggestions aren’t as personalized as someone with a
preference on game mode(s), genre(s), and console(s) preferences will get the same results as a
user with those exact preferences. The only difference is that the program won’t show games that
the user has already beaten. The only problem with this algorithm which can also show up in
other algorithms is that some games that are a collection of other games might show up or some
games that have multiple different versions of the same game whether that be a remake or a port
can also show up. This is a bit of a problem because if the user has a game in that collection of
games they might not be interested in that game as they already have one of those games in the
collection or if the game shown is a remake or port of a game that the user has already beaten,
the user might not want to buy that game again as they already have it. But, there are a decent
amount of users that like those sorts of games. Looking at the real-world data of the users, some
of them have the original game and the remake or port, especially if they rated the original pretty

highly. This is because some users' favorite games get ported or remade, adding more to their

41



favorite game almost guaranteeing they will most likely enjoy the port or remake since they liked
the original so much. So, with that, the collection of games, remakes, and ports were kept in the

data set.

Moving on to the based on user’s favorite games page, the algorithm used is also not
personalized more so than the based on preferences algorithm since one user who has the same
favorite game as another user will get the same result of similar games. However, it was decided
to keep it in for more accessibility. This is because if a user is still new to video games and has
only beaten one or two games and doesn’t know what they like or dislike, they can find games
similar to that of the games they played if they enjoyed those games. Especially if that is all they
are looking for; a game similar to that they love and have high standards about. Then for the
Naive Bayes algorithm [11], the algorithm is like the collaborative filtering algorithm being
personalized, but it is an algorithm that isn’t used anywhere else like the other suggestion
systems like Steam [23]. The algorithm personalizes the user’s suggestions by categorizing the
user into an average rating category and that shows games that have that average rating. It isn’t
as personalized as two users can be put in the same average rating category and get the same
suggestions, but it is highly unlikely especially if there are a lot of users with different average
ratings increasing the number of average rating categories. These suggestions are also ranked on
popularity showing that the average is more reliable for the higher-up suggestions as more

people rated it giving it a more reliable average.

After looking at the program from a visual point of view seeing that the application was
accurate, accessible, clean, and had very well-functioning and personalized algorithms, it was

time to look at it from a data standpoint. Using a bit of code to obtain execution time, the data

42



was used to compare the different algorithms made for the new recommendation system to see

which one was the fastest. (Figure 21)

Comparison of Recommendation Algorithms

1750 4

1500 A

1250 4

1000 A

750 A

Average Response Time (ms)

500 4

250 +

L I
)
’06\2’ XX R\(\
R &
G W2
& &
< &
o\\'b
(&

Recommendation Algorithms

(Figure 21: algorithm comparison table)

Going off the data of the algorithms used in the web application, it was clear to see that if the
user wants recommendations fast, they can use the similar games algorithm or collaborative
filtering[16] as they have the lowest execution times. Meanwhile Naive Bayes[11] has the

highest execution time due to the fact that it is a much more complex algorithm than the rest.

5.3 User Feedback

After fixing bugs and errors as well as improving the algorithms to be more accurate, it
was time for other users to test it out. Gathering a few people who played video games to test it

out and asking what they thought about it. Each started by registering as a user entering games

43




and consoles and logging in. They then proceed to test out each recommendation method and see
their recommendations. Most of them were very happy and satisfied with the recommendations
as they were games they never heard of before. All of them added at least one game to their
backlog as it caught their eye. As the users were testing out the program, some of them even
made comments such as “This is better and more accessible than Steam’s system” or “I would
genuinely use this application to log my gaming data and find new games” showing that the
application improves on what is already out there and shows that it’s something useful for
gamers. It seemed that the collaborative filtering and top-k algorithms were better at creating
recommendations as most users added to their backlog games from those recommendation
methods while Naive Bayes and games similar to their favorites were not as popular which made
some sense as those algorithms didn’t produce as many suggestions as the other two. Also,
varying users still had accurate results as users who didn’t have that many games and consoles
(users with small data) still showed good and accurate results as users with lots of games and
consoles (users with large data). Overall, users were stratified with the recommendations and had

a positive outcome as they were glad to say they found a new game they were interested in.

44



Discussion

6.1 Strengths and Limitations

Overall, the recommendation system proved to be successful. It adeptly provided game
recommendations through multiple approaches, ranging from highly personalized to more
general methods. The system was effective for both novice and experienced gamers. It includes a
comprehensive selection of video games from various consoles, with ratings based on user data
to further refine the personalization of recommendations. Additionally, the system offers four
distinct recommendation methods, enabling users to choose the approach they believe will yield
the most relevant results. The application is designed to be straightforward and user-friendly,

with a primary focus on its core function of delivering accurate game recommendations.
6.2 Future Research Directions

With all being said, just like anything, the application isn’t perfect and can always be
improved. As talked about before in the Methodology chapter, the data obtained didn’t have
everything desired. Even though the data was big and had a decent amount of information, two
other things were wanted which would’ve been how long it takes for the game to be beaten on
average and how much the game costs. With this data, it would’ve changed the based-on
preference algorithm to include these as parameters where the user would put a range of how
long they want the game to be and what budget the user has on spending a game. Also, it
would’ve added to each recommendation showing the price and how long it takes to beat the
game in case users wanted a shorter or longer game or if they wanted a cheap or more expensive

game. Finding the price data would be hard, especially for retro games or games that have

45



paywalls/microtransactions as retro games have no retail price since a lot of them aren’t being
made anymore and unless the game states it, it’s hard to tell if the game has more things you
need to pay for once you buy the base game. This could be solved by calculating the average
price retro games are going for by sellers and if there is data on games stating whether or not
they have paywalls/microtransactions, but from the research, finding a good enough data set for
how long to beat that didn’t seem possible. As for the average time it takes to beat a game there
is a good website called How Long To Beat [12] which does show that information, but couldn't
figure out a good way to web scrape and extract that data, and the data found only matched up
with a select portion of the games in the data set. Other than that, another thing that could have
been done to improve the application was to somehow link their Steam [26], PlayStation, and/or
Xbox accounts to the user’s profile to add the games from those accounts to the user’s profile.
The only problem would be that those games wouldn’t be rated and they couldn’t be determined
if they beat those games or not, but it would be a useful way to add games instead of the user
having to manually enter each game and rating. However, with the ability of the user being able
to enter the games they want to enter, the user can manipulate the data by only adding games
they liked to increase their chances of getting a suggestion they like instead of having the list of
all the games they beat which include games they may not enjoy as much. The only downside is
that those games they didn’t like as much that the user didn’t enter could pop up as a suggestion
instead. Lastly, the other thing to change/add is to have the ability to update the game data set as
new games and updates are always being added and thus they should also be added and updated
to the data. Doing this automatically seemed impossible, unless the data was loaded from the
API every time, but that would take a long time. So, instead, the other option was to manually

update the data by receiving it from the API every once in a while.

46



With all the errors and bugs fixed and testing all the algorithms, the end product was a
pretty reliable suggestion system. One that has some personalized algorithms such as the user
similarly and Naive Bayes algorithms [11] as well as some algorithms that are just based on the
data which were based on the user’s preferences or the user’s favorite games. The algorithms can
be compared to other suggestion systems such as Steam, but with the data obtained, the
recommendations have more variety and eliminate all games that the user has beaten as well as

show if the user has the game in their backlog or not.

47



Conclusion

After identifying and resolving all bugs and errors, a functional program was achieved
with minimal issues. The data was meticulously cleaned and organized, the algorithms were
tested and optimized for accuracy and efficiency, and the web application was designed to allow
users to register, log in, edit their profiles, and, most importantly, receive personalized
recommendations while having easy access to all functionalities. This project was both
challenging and educational, representing the first experience in developing such a large-scale
web application and the second time undertaking a significant project. Nonetheless, there
remains potential for further improvement, as additional features could be implemented given

more time and resources.
7.1 Learning Process

This project was a big struggle. Only doing one other big project like this with the senior
project with the undergraduate program. But unlike the senior project which was a simple video
game that was very long and tedious with the help of a video game engine, this project was
completely different being less tedious and more research testing, and tuning as it has a lot more
moving parts to it. It was the first time making such a big personalized web application with a
little bit of experience prior in the undergraduate program, and it was the first time using the
backend FastAPI [7]. With this project, a lot more about web applications was learned and a lot
more experience with web applications was obtained as well as FastAPI [7] and React [24].
More knowledge and experience with algorithms and being able to convert algorithms into
Python code and implement them for the data sets were learned. With the data sets, more

experience in scraping the web for data was obtained as well as working with APIs and cleaning

48



and preparing data to have the ability to work well with the algorithms. The project took a bit
longer than expected because of the lack of experience with web applications and big projects
like this, but now with this project, more comfortability with big projects and with web

applications was obtained.

7.2 Summary of Findings

Personalizing and creating an accurate recommendation system proved challenging, as
many recommendations are inherently subjective and there is no guarantee that any single game
will appeal to everyone. Just as with any form of media, there will always be individuals who do
not enjoy certain games. However, the developed algorithms and web application effectively
create a robust suggestion system. Given the four different algorithms integrated into the
application, it is highly likely that at least one will provide recommendations that users will find
appealing, particularly those based on top results, which are more likely to align with user

preferences.

Additionally, identifying and resolving bugs and errors presented a significant challenge
due to the extensive data and numerous user inputs that could potentially disrupt the code. Most
issues were addressed, and the web application was refined to be simpler, more accessible, and

user-friendly, ensuring a positive user experience.

7.3 Contributions to the Field

The application as a whole can be considered better than the other video game suggestion
systems such as Steam [26], IGDB [14], and RAWG [23] as it has more variety of both games

and algorithms as well as more personalized suggestions and more customization for the user’s

49



profile. As the web application uses four different algorithms all using different forms of
suggesting and providing different results with low mean squared error percentages and ranked
by probabilities. Also with a lot of different options for the algorithms that aren’t as personalized
that find games based on preferences or by user’s favorite games. The other suggestion systems
have some of these algorithms, but they don’t have the variety of games or they aren’t as
personalized, or don’t have all the algorithms that the application has. The web application only
is good for suggesting games and personalizing users as the other suggestion systems do other
things such as be the database for games, however, even though the application does one major
thing, and that one thing alone is mostly to suggest games, it exceeds at that and does a better
and more efficient job of that than the others. With that, it also keeps it simple as it only has one

job and does that job well by also not having anything else to overwhelm or confuse the user.

7.4 Final Thoughts

Overall, this project involved substantial effort, including the acquisition and application
of numerous new techniques on a large scale. Although the process was lengthy, the outcome is
commendable. While the system is not perfect and has room for further enhancement, it
effectively surpasses existing recommendation systems by providing personalized suggestions
and diverse methods for recommending games to users. The application is designed with
simplicity in mind, offering an intuitive interface for users to navigate and access its features.
With the algorithms integrated into this application, it is anticipated that users will find it easier
to discover games they enjoy, resulting in a more satisfying and worthwhile investment of their

time and money.

50



List of References

[1] Activision.com. Accessed: February 20, 2024. [Online.] Available:

https://www.activision.com/?utm source=404&utm medium=redirect&utm campaign=

122222
[2] AppleMusic.com. Accessed: February 20, 2024. [Online.] Available:

https://music.apple.com/us/browse

[3] Bethesda.net. Accessed: February 20, 2024. [Online.] Available:

https://bethesda.net/en/dashboard

[4] Blizzard.com. Accessed: February 20, 2024. [Online.] Available:

https://www.blizzard.com/en-us/

[5] ChromeDriver. Accessed: June 20, 2024. [Online.] Available:

https://developer.chrome.com/docs/chromedriver

[6] EA.com. Accessed: February 20, 2024. [Online.] Available: https://www.ea.com/

[7] FastAPIl.com. Accessed: April 25, 2024. [Online.] Available:

https://fastapi.tiangolo.com/

[8] Flask.com. Accessed: April 5, 2024. [Online.] Available:

https://flask.palletsprojects.com/en/3.0.x/

[9] GameFreak.co.jp. Accessed: February 20, 2024. [Online.] Available:

https://www.gamefreak.co.jp/

[10] Hacking the Thesis. (n.d.). The Ohio State University. Retrieved February 16, 2022,

from https://u.osu.edu/hackingthethesis/managing-stuff/your-content/outline/

51


https://www.activision.com/?utm_source=404&utm_medium=redirect&utm_campaign=122222
https://www.activision.com/?utm_source=404&utm_medium=redirect&utm_campaign=122222
https://music.apple.com/us/browse
https://bethesda.net/en/dashboard
https://www.blizzard.com/en-us/
https://developer.chrome.com/docs/chromedriver
https://www.ea.com/
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/3.0.x/
https://www.gamefreak.co.jp/
https://u.osu.edu/hackingthethesis/managing-stuff/your-content/outline/

[11] Hand, David & Yu, Keming. (2007). Idiot's Bayes: Not So Stupid after All?.
International Statistical Review. 69. 385 - 398. 10.1111/].1751-5823.2001.tb00465.x.
[12] HowLongToBeat.com. Accessed: March 3, 2024. [Online.] Available:

www.howlongtobeat.com

[13] Hulu.com. Accessed: February 20, 2024. [Online.] Available:

https://www.hulu.com/welcome?oriqg referrer=https%3A%2F%2Fwww.google.com%2F

[14] “IGDB: Video Game Database APL.” IGDB.com. Accessed: February 20, 2024.

[Online.] Available: www.igdb.com/api.

[15] Instagram.com. Accessed: February 20, 2024. [Online.] Available:

https://www.instagram.com/

[16] S. Manakkadu, S. P. Joshi, T. Halverson and S. Dutta, "Top-k User-Based
Collaborative Recommendation System Using MapReduce," 2021 IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA, 2021, pp. 4021-4025, doi:
10.1109/BigData52589.2021.9671395. keywords: {Web services;Collaborative
filtering;Scalability;Clustering algorithms;Cluster computing;Big Data;Filtering
algorithms;Recommender systems;Collaborative filtering;MapReduce;Social
networks;MovielLens}

[17] Metacritic.com. Accessed: June 20, 2024. [Online.] Available:

www.metacritic.com/.

[18] MicrosoftStore.com. Accessed: February 20, 2024. [Online.] Available:

https://www.xbox.com/en-US/microsoft-store

[19] Netflix.com. Accessed: February 20, 2024. [Online.] Available:

https://www.netflix.com/

52


http://www.howlongtobeat.com/
https://www.hulu.com/welcome?orig_referrer=https%3A%2F%2Fwww.google.com%2F
http://www.igdb.com/api
https://www.instagram.com/
http://www.metacritic.com/
https://www.xbox.com/en-US/microsoft-store
https://www.netflix.com/

[20] Nintendo.com. Accessed: February 20, 2024. [Online.] Available:

https://www.nintendo.com/us/

[21] PlayStationStore.com. Accessed: February 20, 2024. [Online.] Available:

https://store.playstation.com/en-us/pages/latest

[22] PostgresSQL.org. Accessed: April 2, 2024. [Online.] Available:

https://www.postgresgl.org/

[23] RAWG.com. Accessed: February 20, 2024. [Online.] Available: www.rawg.io

[24] React.dev. Accessed: April 28, 2024. [Online.] Available: https://react.dev/

[25] Spotify.com. Accessed: February 20, 2024. [Online.] Available:

https://open.spotify.com/

[26] Steam.com. Accessed: February 20, 2024. [Online.] Available:

www.store.steampowered.com/

[27] Tailwind.com. Accessed: June 8, 2024. [Online.] Available: https://tailwindcss.com/

[28] TikTok.com. Accessed: February 20, 2024. [Online.] Available:

https://www.tiktok.com/en/

[29] What Is a Recommendation System? NVIDIA Data Science Glossary. Accessed:

February 16, 2024, from www.nvidia.com/en-us/glossary/recommendation-system/..

[30] YouTube.com. Accessed: February 20, 2024. [Online.] Available:

https://www.youtube.com/

53


https://www.nintendo.com/us/
https://store.playstation.com/en-us/pages/latest
https://www.postgresql.org/
http://www.rawg.io/
https://react.dev/
https://open.spotify.com/
http://www.store.steampowered.com/
https://tailwindcss.com/
https://www.tiktok.com/en/
http://www.nvidia.com/en-us/glossary/recommendation-system/
https://www.youtube.com/

Appendices

Code used to obtain game data set from IGDB - Thesis Start.ipynb
Code used to clean up the game data set - video_game_data_clean_up.py
Code used to make example user data set - Thesis Start.ipynb

Code used to test collaborative filtering algorithm - Thesis Start.ipynb

Code used to test based on preferences algorithm - ML model.ipynb

Code used to scrap real-world user data - Real User Data and Naive Bayes.ipynb

Code used to test Naive Bayes algorithm - Real User Data and Naive Bayes.ipynb

Code used to find execution time and accuracy of the algorithms - Execution time.ipynb

Code used to transfer the data sets into SQL Postgres - PostgresSQL.py
Code used for the backend of the web application - main.py

Code used for routing - App.js

Code used for authority/user security - AuthContext.js

Code used for the frontend of the edit profile page - EditProfilePage.js
Code used for the frontend of the preference page - GameModePage.js
Code used for the frontend of the home page - HomePage.js

Code used for the frontend of the login page - LoginPage.js

Code used for logout button - LogoutButton.js

Code used for the frontend of Naive Bayes page - NaiveBayesPage.js
Code used for the frontend of the profile page - ProfilePage.js

Code used for the frontend of the register page - RegisterPage.js

Code used for the frontend of similar games page - SimilarGamesPage.js

54



e Code used for styling - styles.css
e Code used for tailwind - tailwind.css

e Code used for the frontend of the collaborative filtering page - UserSimilarityPage.js

55



