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Abstract 

This research project aims to investigate the intricate relationship between aging, lifestyle choices, 

cardiovascular diseases (CVDs), and brain strokes in older adults. The pressing problem is the 

growing burden of CVDs and strokes among the elderly, and the need to understand the impact of 

lifestyle factors on these health outcomes. 

 

The primary objectives of this study are to assess the incidence of heart disease, high blood 

pressure, and brain strokes in the senior population, analyze how lifestyle factors like smoking 

status and body mass index (BMI) influence stroke frequency, explore the connections between 

heart disease, hypertension, and strokes, and investigate the potential influence of additional 

variables such as gender, average blood glucose levels, and type of residence. Furthermore, this 

research seeks to propose interventions and preventive strategies to reduce the incidence of brain 

strokes among older adults. 

 

This research employs a comprehensive analysis of a publicly accessible dataset from Kaggle, 

which contains a wide range of health-related variables. The dataset provides valuable insights 

into lifestyle choices, health conditions, and the occurrence of brain strokes in older individuals. 

Various statistical and data analysis techniques will be applied to uncover associations and trends, 

contributing to a deeper understanding of the complex interactions between lifestyle choices, 

CVDs, and brain strokes. 

 

Through a meticulous examination of the data, this study intends to shed light on the multifaceted 

relationships among lifestyle choices, cardiovascular diseases, and strokes in the elderly. The 

results will contribute to public health, geriatrics, and medical fields by providing evidence-based 

knowledge that can inform strategies for risk assessment, disease management, and health 

promotion among older adults. 

 

This research project holds the potential to benefit multiple stakeholders. For healthcare 

professionals, the findings can lead to the development of effective strategies for the management 

of CVDs and strokes in older individuals. It may also inform public health campaigns and policy 

initiatives aimed at reducing the risk of these conditions within an aging population. Additionally, 

the study contributes to the existing body of knowledge in this field, providing a foundation for 

further research and the potential discovery of new interventions and risk mitigation strategies. 

Overall, this research addresses a critical health concern affecting older adults and has the potential 

to improve the well-being of this vulnerable population. 
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Introduction 

 

As the global population ages, the impact of cardiovascular diseases (CVDs) on the elderly has 

emerged as a critical concern in public health. CVDs, comprising a range of disorders affecting 

the heart and blood vessels, stand as the foremost cause of mortality worldwide, claiming 

approximately 17.9 million lives annually. Among these, coronary heart disease, cerebrovascular 

disease, and rheumatic heart disease contribute significantly to the burden of CVDs 
[1].  

 

The grim reality is that more than four out of five deaths related to CVDs find their origin in heart 

attacks and strokes, with a particularly distressing one-third occurring prematurely among 

individuals under the age of 65. This demographic twist intensifies the urgency to address the 

complex interplay between aging, cardiovascular health, and associated risk factors. This 

escalating threat to the aging population is compounded by the prevalence of behavioral risk 

factors such as unhealthy diet, physical inactivity, tobacco use, and harmful alcohol consumption. 

These factors manifest physiologically as elevated blood pressure, increased blood glucose levels, 

raised blood lipids, and the onset of overweight and obesity. Recognized as "intermediate risk 

factors," these markers signal an augmented susceptibility to heart attacks, strokes, heart failure, 

and related complications[1]. 

 

The silver lining amidst these challenges lies in the demonstrated efficacy of interventions aimed 

at modifying behavior to mitigate CVD risks. Strategic measures such as tobacco cessation, 

controlled salt intake, heightened consumption of fruits and vegetables, regular physical activity, 

and moderation in alcohol use have proven instrumental in diminishing the overall risk of 

cardiovascular diseases. However, the success of these interventions hinges on the implementation 

of robust health policies that foster environments conducive to healthy choices, ensuring that such 

measures are not only accessible but also affordable to all segments of the aging population[19]. 

 

In the context of an aging population, the imperative becomes clear: identifying those at the highest 

risk of CVDs and deploying timely and appropriate interventions. The crux lies in guaranteeing 

access to noncommunicable disease medicines and essential health technologies in primary 

healthcare facilities, ensuring that the elderly receive the requisite treatments and counseling. Thus, 

this thesis embarks on a journey to unravel the intricate relationship between aging, lifestyle 

choices, and cardiovascular diseases. Through a meticulous exploration of effective strategies for 

risk assessment, management, and the promotion of cardiovascular health in the elderly, we aspire 

to contribute to the collective effort to mitigate the burgeoning impact of CVDs on our aging global 

community. 

 

This research is structured to address each of the objectives systematically. It will consist of 

chapters covering the literature review, data collection and analysis, results, and discussions. Each 

chapter will build upon the findings of the previous one, culminating in a comprehensive 

understanding of the relationships between aging, lifestyle choices, cardiovascular diseases, and 

brain strokes in older adults. 
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The thesis explores key features on grading the factors of stroke across different age groups, 

focusing on oversampled data from ages 0-100, above 65, and 0-65. Through the analysis of 

various models—Logistic, Decision Tree, DNN, and Random Forest—consistent patterns emerge, 

highlighting the top predictors for stroke risk. Hypertension and heart disease consistently stand 

out across all age groups, aligning with established medical knowledge. The influence of marital 

status, residence type, and average glucose level is also notable, suggesting the importance of 

social, environmental, and lifestyle factors. The implications of these findings are discussed, 

emphasizing the need for targeted interventions and public health strategies. Limitations of 

oversampled data are acknowledged, and recommendations for future research are provided. The 

thesis contributes valuable insights for healthcare professionals and policymakers in devising 

effective strategies for stroke prevention and management across diverse age groups. 

 

Problem Statement 

 

Cardiovascular diseases, including heart disease and high blood pressure, are leading causes of 

mortality and morbidity, particularly among older adults. Brain strokes, both ischemic and 

hemorrhagic, represent a significant and potentially devastating health event for seniors. Lifestyle 

factors such as smoking habits, body mass index (BMI), and other variables, including gender, 

marital status, occupation, residence type, and average glucose levels, have been shown to 

influence the development of CVDs and strokes in this population. The complex interaction of 

these factors poses a significant challenge to both researchers and healthcare professionals. 

This research project aims to address the following fundamental questions: 

 

• What is the incidence of heart disease, high blood pressure, and brain strokes in the elderly 

population? 

• How do lifestyle factors, such as smoking status and BMI, impact the frequency of brain 

strokes? 

• What are the relationships between heart disease, hypertension, and brain strokes in older 

individuals? 

• Can additional variables, such as gender, average blood glucose levels, and type of 

residence, influence the risk of brain strokes in seniors? 

• What key factor should the elderly prioritize to safeguard themselves from cardiovascular 

diseases (CVDs)? 

• Examining various age groups by utilizing a variable importance plot to gain insights into 

the key factors contributing to cardiovascular diseases (CVDs). 

 

Aim and Significance 

 

The primary aim of this research is to gain a deeper understanding of the interplay between lifestyle 

choices, cardiovascular diseases, and brain strokes in older adults. By investigating these 

relationships, we intend to provide valuable insights for: 
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• Public Health: The findings may inform prevention strategies, early detection, and targeted 

interventions to reduce the burden of cardiovascular diseases and strokes in the elderly 

population. 

• Elderly Care and Geriatrics: Healthcare professionals, including geriatricians, 

cardiologists, and neurologists, can use the results to develop effective strategies for risk 

assessment, disease management, and overall health improvement for older adults. 

• Health Promotion and Policy: The results may support policy efforts related to 

cardiovascular health and stroke prevention, particularly in the context of an aging 

population. Health promotion campaigns and interventions can be designed to target 

specific lifestyle factors that influence the development of cardiovascular diseases and 

strokes in older individuals. 

• Research Foundation: This research project contributes to the existing body of knowledge 

on the relationship between lifestyle factors, cardiovascular diseases, and strokes in older 

adults. The findings may serve as a basis for further research, leading to advances in the 

field and the potential discovery of new interventions and risk mitigation strategies. 

 

Expected Outcomes 

 

• Identification of High-Risk Groups: The research aims to identify specific demographics 

within the elderly population that are at a higher risk of cardiovascular diseases and strokes. 

This information is crucial for targeted interventions and personalized healthcare. 

• Understanding Lifestyle Impacts: By delving into the relationships between lifestyle 

factors and health outcomes, the study aims to elucidate how behaviors such as smoking 

and BMI contribute to the incidence of cardiovascular diseases and strokes in older 

individuals. 

• Policy Recommendations: The research findings will contribute to evidence-based policy 

recommendations for public health initiatives and healthcare strategies tailored to the aging 

population. This includes recommendations for lifestyle interventions, healthcare access 

improvements, and preventive measures. 

• Healthcare Professional Guidance: Healthcare professionals will benefit from insights into 

effective risk assessment and management strategies, enabling them to provide more 

targeted and personalized care for older adults. 

• Contribution to Scientific Knowledge: The research project will contribute to the scientific 

understanding of the complex interplay between aging, lifestyle choices, and 

cardiovascular health. This knowledge will serve as a foundation for future studies and 

potential breakthroughs in preventive healthcare. 
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Background 

In the context of cardiovascular diseases (CVDs) and strokes, this research aims to contribute to 

the understanding of the intricate relationships between aging, lifestyle choices, and health 

outcomes in older adults. The growing elderly population globally, while indicative of longer life 

expectancy, presents a significant challenge due to the increasing burden of age-related health 

issues. Among these, CVDs and strokes emerge as major contributors to disability and mortality 

in older individuals. 

 

Observing the challenges faced by the elderly population due to age-related health issues, 

particularly CVDs and strokes, fueled my commitment to contribute meaningfully to this field. 

Additionally, academic exposure to the evolving landscape of machine learning (ML) and its 

applications in healthcare further inspired my research direction. Recognizing the potential of ML 

models in predicting strokes based on diverse participant profiles, I sought to leverage these tools 

to enhance our understanding of the multifaceted factors influencing stroke risk in older adults. 

This thesis, therefore, represents a fusion of personal experiences and academic curiosity, driven 

by the goal of making impactful contributions to the prevention and management of CVDs and 

strokes in the aging population. 

 

The burden of CVDs, encompassing conditions such as heart disease and hypertension, is 

particularly pronounced in the aging population. These health challenges often lead to strokes, 

which can result in long-term neurological impairment or even death. Lifestyle choices, including 

factors such as smoking and body mass index (BMI), play a crucial role in the development and 

progression of CVDs and strokes. Understanding the impact of these lifestyle factors on the 

frequency of strokes in older adults is essential for devising effective preventive strategies. 

 

Furthermore, the interconnections between heart disease, hypertension, and strokes are central to 

this research. Many strokes, classified as ischemic, stem from obstructed blood flow to the brain, 

often linked to conditions like atherosclerosis. Exploring the relationships between these 

interconnected health issues is vital for comprehensive preventive measures. 

 

Beyond lifestyle choices and direct health conditions, this study delves into the influence of 

additional variables such as gender, average blood glucose levels, and type of residence. By 

considering a broad range of factors, a holistic understanding of the contributors to CVDs and 

strokes in older adults is sought. 

 

In comparing the findings with previous work, the prevalence of stroke and its profound impact 

on global health necessitates effective strategies for early prediction and risk assessment. In the 

study performed by Elias Dritsas and Maria Trigka, they leveraged machine learning (ML) 

techniques to develop models for long-term stroke risk prediction [4]. The proposed approach, 

particularly the novel stacking method, demonstrated promising results in terms of various 

performance metrics, including AUC, precision, recall, F-measure, and accuracy[4]. 

 

https://pubmed.ncbi.nlm.nih.gov/?term=Dritsas%20E%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Trigka%20M%5BAuthor%5D
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The stacking method, a combination of multiple ML models, showcased superior predictive 

capabilities compared to individual models and majority voting. The achieved AUC of 98.9% 

highlights the robustness of the stacking method in discerning stroke risk. Precision, recall, and F-

measure, crucial for evaluating the model's ability to correctly identify positive instances, exhibited 

values of 97.4%, indicative of the model's high accuracy in classifying stroke occurrences. The 

overall accuracy of 98% further reinforces the effectiveness of our proposed approach[4]. 

 

The significance of early stroke prediction cannot be overstated, considering the staggering 

statistics provided by the World Stroke Organization, indicating the annual occurrence of 13 

million strokes and 5.5 million associated deaths. Stroke's far-reaching impact on individuals and 

their social environment underscores the importance of proactive measures. Our research 

contributes to this imperative by providing a reliable framework for long-term stroke risk 

assessment. 

 

Understanding the factors influencing stroke risk is crucial for effective prediction. Our analysis 

considered a range of factors, including demographic information, medical history, and lifestyle 

factors, in line with established risk factors such as hypertension, heart disease, age, smoking, and 

diabetes. The use of a balanced dataset, facilitated by the synthetic minority over-sampling 

technique (SMOTE), addressed class imbalance issues, enhancing the models' ability to generalize. 

 

The literature review revealed a growing interest in utilizing ML for stroke risk prediction. 

Comparing our results with prior studies, the stacking method outperformed other algorithms, 

demonstrating its efficacy in enhancing predictive accuracy. The diverse set of ML models 

evaluated, including naive Bayes, logistic regression, stochastic gradient descent, K-NN, decision 

trees, random forests, and multi-layer perception, contributed to a comprehensive understanding 

of the predictive landscape. 

 

Despite the success of ML models in predicting strokes, a limitation noted is the reliance on 

publicly available datasets, which may lack the richness of information obtained from hospital or 

institute data. The research concludes with a call for further enhancements to the ML framework, 

potentially incorporating deep learning methods. Ultimately, the stacking method is highlighted as 

the best-performing approach and a primary recommendation for stroke prediction based on the 

study's findings. 

Skewness 

 

Skewness, denoted as Skew(X), quantifies the asymmetry in the probability distribution of a real-

valued random variable X. In the context of a dataset, skewness has been computed for various 

numerical features. The skewness value, Skew(X), represents the degree of asymmetry, where a 

positive value indicates a right-skewed distribution, a negative value indicates a left-skewed 

distribution, and a skewness of zero suggests a perfectly symmetrical distribution [6].  

 

   Skew = 3(mean - median) / standard deviation 
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Chi-Square Test  

 

The Chi-square test is a statistical method used to assess the association between categorical 

variables. To determine the association between each categorical variable and the occurrence of 

strokes in the dataset, the Chi-square test can be applied to examine if there is a significant 

relationship between the two[18]. 

 

Let's denote the categorical variable as X and the occurrence of strokes as Y. The null hypothesis 

(H0) assumes that there is no association between the categorical variable and the occurrence of 

strokes, while the alternative hypothesis (H1) suggests that there is a significant association. 

 

The Chi-square statistic (X2) is calculated using the formula: 

 

X2=∑(Oi-Ei )2/ Ei 
 

where: 

 

• 𝑂𝑖 is the observed frequency in each category, 

• 𝐸𝑖 is the expected frequency in each category under the assumption of no association, 

• The summation (∑) is taken over all categories [18]. 

 

The expected frequency (𝐸𝑖) for each category is calculated as: 

 

𝐸𝑖 =  (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 ×  𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙) / 𝑔𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙 
 

The degrees of freedom (df) for the Chi-square test in this context would be  

(Number of rows−1) × (number of columns−1) (number of rows−1) × (number of columns−1) [18]. 

 

Once the Chi-square statistic is calculated, it is compared to the critical value from the Chi-square 

distribution with the given degrees of freedom. If the calculated Chi-square statistic is greater than 

the critical value, the null hypothesis is rejected, indicating a significant association between the 

categorical variable and the occurrence of strokes. 

 

Chi-Square Test Parameters: 

 

• Chi-Square Statistic: A measure of the strength of association or dependence between the 

two variables as explained above. 

• p-value: The p-value is the probability that the observed relationship occurred by chance. 

It is obtained by comparing the calculated Chi-Square statistic to the Chi-Square 

distribution with the appropriate degrees of freedom. The calculation involves the 

cumulative distribution function (CDF) of the Chi-Square distribution. The smaller the p-

value, the more significant the association. Mathematically, it can be expressed as [18]: 

 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  𝑃(𝑋2 ≥  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋2| 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 
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• Degrees of Freedom(df): The degrees of freedom for the Chi-Square test are calculated 

based on the number of categories in the contingency table. For a contingency table with r 

rows and c columns, the degrees of freedom (df) are given by [18]: 

 

𝑑𝑓 =  (𝑟 −  1)  × (𝑐 –  1)  
 

Uneven Anova Test  

ANOVA, or Analysis of Variance, is a statistical test used to compare means across different 

groups. The basic idea is to determine if there are any statistically significant differences between 

the means of the groups being compared. ANOVA can be classified into two main types: one-way 

ANOVA and two-way ANOVA. One-way ANOVA is appropriate when there is one independent 

variable, and it compares the means of three or more groups. 

 

Now, when we talk about "uneven ANOVA," it might refer to situations where the sample sizes 

in the different groups are not equal. This is also known as "unbalanced" data. Uneven sample 

sizes can affect the power and sensitivity of the ANOVA test. 

 

The one-way ANOVA test statistic is based on the F-ratio, which is the ratio of the variance 

between groups to the variance within groups. In mathematical terms, the F-ratio is calculated as 

follows: 

 

𝐹 =  𝑀𝑆𝐵/𝑀𝑆𝑊 

 

where: 

F is the F-ratio, 

MSB is the mean square between groups, 

MSW is the mean square within groups. 

 

The mean square between groups (MSB) is a measure of how much the group means differ from 

each other, and the mean square within groups (MSW) is a measure of how much individual 

observations within each group vary from their group mean. 

 

For unbalanced data, the formulas for (MSB) and (MSW) become a bit more complex due to the 

uneven sample sizes. The general idea, however, remains the same: you're comparing the variation 

between groups to the variation within groups. 

 

In simple terms, if the F-ratio is sufficiently large, it suggests that there are significant differences 

between the group means. To determine whether this difference is statistically significant, you 

compare the F-ratio to a critical value from a statistical table or use a p-value. 
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In summary, uneven ANOVA deals with situations where sample sizes in different groups are not 

equal, and the F-ratio is a key statistic used to assess whether the differences between group means 

are significant or just due to random variability. 

Data Preprocessing - Oversampling 

 

Oversampling is a technique used in data analysis to address the issue of imbalanced datasets, 

where one class or outcome is significantly more prevalent than the other(s) [3] .  
 

In this case, the dataset contains information related to stroke, and it appears that the "stroke" class 

is imbalanced, meaning there are more instances of stroke cases (class 1) compared to non-stroke 

cases (class 0). To handle this imbalance and ensure that the model doesn't exhibit bias toward the 

majority class, oversampling was performed. 

 

Oversampling involves creating more instances of the minority class (class 0, in this case) so that 

the dataset becomes more balanced [3]. This can be done through various techniques, here we have 

used Random Oversampling:  

 

Random Oversampling: In random oversampling, additional instances of the minority class are 

generated by randomly duplicating existing data points. This is a simple method but can lead to 

overfitting if not carefully implemented [3]. 

 

Let's denote: 

 

𝑁𝑚𝑎𝑗: the number of instances in the majority class. 

𝑁𝑚𝑖𝑛: the number of instances in the minority class. 

𝑝: the oversampling ratio, representing how to oversample the minority class. For example, if  

𝑝 = 0.5, it means to increase the number of instances in the minority class by 50%. 

 

The oversampled number of instances (𝑁min_𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑) in the minority class can be calculated 

as: 

 

𝑁min_𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 =   𝑁𝑚𝑖𝑛 × (1 + 𝑝) 

 

The total number of instances after oversampling (𝑁𝑡𝑜𝑡𝑎𝑙𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑) is then: 

 

𝑁𝑡𝑜𝑡𝑎𝑙𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 𝑁𝑚𝑎𝑗 + 𝑁𝑚𝑖𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 

 

After applying random oversampling, the class distribution should be more balanced. Keep in mind 

that while oversampling can help address the imbalanced dataset issue, it may also lead to 

overfitting, so it's important to evaluate the performance of the model on a separate validation or 

test set. 
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By using one of these oversampling techniques, the goal is to create a more balanced dataset, where 

the number of stroke cases and non-stroke cases is closer to being equal. This helps the machine 

learning model learn from both classes more effectively, leading to a more balanced and unbiased 

prediction [3]. 

Data Splitting 

 

To build and evaluate a predictive model for stroke incidence, it is crucial to appropriately split 

the dataset into training and testing sets. The dataset, obtained from Kaggle, consists of 10 columns 

capturing various parameters such as gender, age, hypertension, heart disease, marital status, work 

type, residence type, average glucose level, BMI, smoking status, and the occurrence of a stroke. 

Given the binary nature of the target variable "stroke," with values of 0 or 1 indicating its absence 

or occurrence, the dataset is amenable to a classification model. To ensure the model's ability to 

generalize to new, unseen data, a common practice involves randomly partitioning the dataset into 

a training set, used for model training, and a testing set, reserved for model evaluation. A typical 

split might involve allocating, for example, 80% of the data to the training set and the remaining 

20% to the testing set. This ensures that the model learns patterns from the majority of the data 

and is subsequently validated on a separate, independent subset to assess its predictive 

performance. The link provided directs to the Kaggle dataset, offering the opportunity for further 

exploration and analysis of this valuable resource in the context of stroke prediction modeling [8]. 
 

Machine Learning Models 

Logistic Regression 

 

Logistic Regression is a widely used statistical method for binary classification tasks. It models 

the probability that an instance belongs to a particular class, often denoted as 1 or 0. The logistic 

function, also known as the sigmoid function, is employed to constrain the output between 0 and 

1 [9]. 

 

Mathematical Equation: The logistic regression model is represented by the following equation: 

 

P(Y=1) = 1 / 1+ e-(β0+β1 X1 +β2 X2 +...+βn Xn ) 

 

Where: 

• 𝑃(𝑌 = 1) is the probability of the positive class, 

• 𝑒 is the base of the natural logarithm, 

• 𝛽0, 𝛽1, . . . , 𝛽𝑛 are the coefficients, and 

• 𝑋1, 𝑋2, . . . , 𝑋𝑛 are the feature values. 

 

For more details, please refer [9] 
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Decision Tree 

 

Decision Trees are non-linear models used for both classification and regression tasks. They 

recursively partition the feature space based on the most informative features, creating a tree-like 

structure of decisions. 

 

Mathematical Notation: Let 𝑅𝑚 represent the region (node) in the feature space created by the 

splits. The decision tree can be expressed as: 

 

𝑅𝑚 = {𝑋 ∣ 𝑋𝑗 ≤ 𝑡𝑚} 

 

Where: 

 

𝑋𝑗 is the 𝑗 − 𝑡ℎ feature, 

𝑡𝑚 is the threshold for node m. 

 

For more details, please refer [19] 

Deep Learning - DNN model 

 

Deep Neural Networks are a class of machine learning models inspired by the structure and 

function of the human brain. They consist of interconnected layers of artificial neurons, each layer 

learning hierarchical representations of the input data. 

 

Deep Neural Networks (DNNs) can be well-suited for cardiovascular data for several reasons: 

 

• Non-Linearity and Complex Patterns: Cardiovascular data often contains non-linear 

relationships and complex patterns that may not be effectively captured by linear models. 

DNNs, with their multiple layers and non-linear activation functions, can learn intricate 

patterns and relationships within the data. 

• Automatic Feature Learning: DNNs are capable of automatically learning hierarchical 

representations from the data, reducing the need for manual feature engineering. This is 

particularly advantageous when dealing with large and complex datasets, as seen in 

cardiovascular studies. 

• Prediction and Risk Stratification: Cardiovascular data often involves predicting outcomes 

or risk stratification. DNNs have shown promise in predictive modeling tasks, including 

the prediction of cardiovascular events based on patient data. 

• Regularization Techniques: DNNs come with various regularization techniques, such as 

dropout and batch normalization, which help prevent overfitting and improve the 

generalization of the model. 

 

Mathematical Notation: Consider a DNN with L layers. The output of the 𝑖 − 𝑡ℎ neuron in the 𝑙 −
𝑡ℎ layer can be expressed as: 
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𝑎𝑖(𝑙) =  𝑔(𝑧𝑖(𝑙)) 

 

Where: 

• 𝑔 is the activation function, 

• 𝑧𝑖(𝑙) is the weighted sum of inputs for neuron 𝑖 in layer 𝑙. 
 

For more details, please refer [11] 

Random Forest Model  

 

Random Forest is an ensemble learning method that constructs a multitude of decision trees during 

training and outputs the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. 

 

Mathematical Concept: Let 𝑇𝑖(𝑥) be the output of the 𝑖 − 𝑡ℎ tree for input x, and H(x) be the output 

of the Random Forest, the aggregated output is defined as: 

 

H(x)= 1/N∑ Ni=1 Ti (x) 

 

Where: 

𝑁 is the number of trees in the forest. 

 

These models offer a diverse set of tools for different problem domains, each with its strengths 

and weaknesses. The choice of the model should be based on the characteristics of the data and 

the goals of the analysis. 

 

For more details, please refer [21] 
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Methodology 

Scope and Methodology 

 

This study will employ a comprehensive analysis of a publicly accessible dataset, which contains 

a wide range of health-related variables. The dataset will be used to examine lifestyle factors, 

health conditions, and the occurrence of brain strokes in older individuals. Statistical and data 

analysis techniques will be applied to uncover associations and trends. The decision to focus the 

research exclusively on older adults aged 65 and above is grounded in the recognition of the unique 

healthcare challenges and demographic shifts associated with this age group. As the global 

population ages, there is a growing need to understand and address the health-related concerns 

specific to older individuals. The research will focus on older adults aged 65 and above, using the 

dataset to investigate the relationships between lifestyle factors, cardiovascular diseases, and brain 

strokes. The primary variables of interest include heart disease, high blood pressure, smoking 

status, BMI, gender, average glucose levels, and type of residence. 

Data 

The dataset comprises 10 columns, each providing valuable information related to stroke 

incidence. A brief description of each column is as follows: 

 

gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bmi smoking_status stroke 

Male 67 0 1 Yes Private Urban 228.69 36.6 
formerly 
smoked 1 

Male 80 0 1 Yes Private Rural 105.92 32.5 never smoked 1 

Female 49 0 0 Yes Private Urban 171.23 34.4 smokes 1 

 

Table 3.1: Dataset 
 

Gender: The gender of the individual (e.g., Male or Female). 

Age: The age of the individual in years. 

Hypertension: A binary variable indicating the presence (1) or absence (0) of hypertension. 

Heart Disease: A binary variable indicating the presence (1) or absence (0) of heart disease. 

Ever Married: A binary variable indicating whether the individual has ever been married (Yes or 

No). 

Work Type: The type of work the individual is engaged in (e.g., Private, Self-employed). 

Residence Type: The type of residence the individual lives in (e.g., Urban or Rural). 

Average Glucose Level: The average glucose level in the individual's blood. 

BMI: The Body Mass Index of the individual, representing their body weight in relation to height. 

Smoking Status: The smoking status of the individual (e.g., formerly smoked, never smoked, 

smokes). 

Stroke: A binary variable indicating the occurrence (1) or absence (0) of a stroke. 

 

For more details on the dataset, please refer [2].  
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Elderly Population 

 

According to the National Center for Biotechnology Information, the term "elderly population" 

traditionally refers to individuals aged 65 and older. In 1987, the United States had just over 30 

million elderly individuals, constituting more than 12 percent of the total U.S. population of nearly 

252 million. This demographic group comprises a significant majority, almost 96 percent, of 

Medicare recipients, emphasizing its substantial impact on healthcare considerations [5]. 

 

The growth of the elderly segment of the U.S. population has outpaced the overall population, a 

phenomenon commonly referred to as "the graying of America." Data from the National Center 

for Health Statistics (NCHS) reveals that between 1960 and 1986, the population aged 65 and older 

experienced a remarkable 75 percent increase, rising from almost 17 million to over 29 million 

individuals. In contrast, the population under 65 increased by only 30 percent during the same 

period. Among those aged 65 and older in 1986, approximately three-fifths fell within the 65 to 

74 age group, one-third were in the 75 to 84 age group, and one-tenth were 85 and older. Notably, 

the rate of growth for the older age groups (75 to 84 and 85 and older) surpassed that of the 65 to 

74 age group between 1960 and 1986. 

 

Projections indicate that from 1987 to 2030, the total U.S. population is expected to increase by 

26 percent, reaching 317 million, while the population aged 65 and older is projected to experience 

a more than 100 percent increase. This would elevate the proportion of the elderly population from 

the initial 12 percent to nearly 21 percent of the total population, totaling 67 million individuals 

by 2030. These projections underscore the sustained growth and aging of the elderly population, 

presenting significant implications for healthcare demands and services catering to the unique 

challenges faced by this demographic, such as multiple chronic illnesses and the necessity for 

adequate means to support independent living. 

 

Exploratory Data Analysis 

 

Exploratory Data Analysis (EDA) is a crucial initial step in the data analysis process that involves 

summarizing, visualizing, and understanding the main characteristics of a dataset. It helps analysts 

and data scientists gain insights, detect patterns, identify outliers, and formulate hypotheses about 

the data. The descriptive analysis is performed on the original dataset to better the current scenario 

of the situation [15].  

 

The histogram (figure 3.1) below displays the distribution of strokes by age. The number of strokes 

increases with age, with the highest number of strokes occurring in people over 80 years old. 

However, strokes can occur at any age, and the number of strokes in people under 50 years old is 

also significant. The histogram displays that the distribution of strokes by age is not uniform. There 

are two distinct peaks in the distribution, one at around 55 years old and one at around 80 years 

old. This suggests that there are two different risk factors for stroke, one that affects younger people 

and one that affects older people. 
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Figure 3.1:  Distribution of Strokes by Age 

 

The plot below (figure 3.2) shows the distribution of strokes by age and hypertension. The stroke 

distribution is shown as a violin plot, where the width of the plot at each point represents the 

density of strokes at that age and hypertension level. The violin plot shows that the risk of stroke 

increases with both age and hypertension. The median age of stroke is around 65 years old, and 

the risk of stroke is significantly higher in people with hypertension than in people without 

hypertension. The violin plot also shows that the distribution of strokes is skewed to the right, 

meaning that there are more strokes in older people and people with higher blood pressure. This is 

because the risk of stroke accumulates over time, and hypertension is a major risk factor for stroke. 

Overall, the image shows that age and hypertension are two of the most important risk factors for 

stroke. People should be aware of their risk factors and take steps to reduce their risk, such as 

controlling their blood pressure and maintaining a healthy lifestyle. 

 
 

Figure 3.2: Stroke Distribution by Age and Hypertension 
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The plot below (figure 3.3) data illustrates the relationship between heart disease, age groups, and 

the occurrence of strokes. It is structured as a table with two categories for "heart disease" (0 and 

1) and four age groups: 0-18, 19-40, 41-60, and 61+. The values in the table represent the 

proportion of individuals in each category who have experienced a stroke. The data reveals distinct 

patterns: In the absence of heart disease (heart disease=0), the likelihood of a stroke is relatively 

low across all age groups, with the highest occurrence observed among individuals aged 61 and 

above. Conversely, for those with heart disease (heart disease=1), the risk of stroke significantly 

increases, with the highest incidence among individuals aged 61 and above. This data provides 

valuable insights into the influence of heart disease and age on stroke occurrence. It suggests that 

older individuals are generally at higher risk of stroke, and the presence of heart disease amplifies 

this risk considerably, particularly among those in the 61+ age group. These findings are relevant 

for understanding stroke prevention and management strategies, especially in the context of heart 

disease and age-related risk factors. 

 

 
Figure 3.3: Stroke Rate Based on Heart Disease and Age Groups 

The heatmap below (figure 3.4) shows that the risk of stroke increases with both BMI and age. 

This is because obesity and aging are two of the most important risk factors for stroke. People with 

obesity are more likely to have other risk factors for stroke, such as high blood pressure, high 

cholesterol, and diabetes. Aging also increases the risk of stroke because the arteries can become 

narrowed and hardened over time, which can reduce blood flow to the brain. The heatmap also 

shows that the risk of stroke is highest in people with obese overweight and who are in the 61+ 

age group. This suggests that people in this category should be especially careful to manage their 

risk factors for stroke. 
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Figure 3.4: Stroke Rate Based on BMI and Age Groups 

The graph below (figure 3.5) shows that the stroke rate is highest for people in government jobs, 

followed by people in private jobs and self-employed people. Children have the lowest stroke rate. 

The stroke rate also increases with age. For example, the stroke rate for people in government jobs 

is about 0.4 per 100,000 people for people aged 20-24, but it increases to about 3 per 100,000 

people for people aged 65 and over. There are a number of possible explanations for the differences 

in stroke rate by work type and age group. One possibility is that people in government jobs are 

more likely to have sedentary jobs, which can increase the risk of stroke. Another possibility is 

that people in government jobs are more likely to be exposed to stress, which can also increase the 

risk of stroke. Self-employed people may also have a higher stroke rate because they are more 

likely to work long hours and have irregular schedules. Children have the lowest stroke rate 

because they are less likely to have the risk factors for stroke, such as high blood pressure, high 

cholesterol, and diabetes. 

 
Figure 3.5: Stroke Rate Based on Work type and Age Group 
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The box plots below (figure 3.6(a) & (b)) show the median, 25th and 75th percentiles, and outliers. 

The median stroke rate is highest for smokers in urban areas (figure 3.6(b)), followed by smokers 

in rural areas (figure 3.6(a)), former smokers in urban areas, and former smokers in rural areas. 

Never smokers in both urban and rural areas have the lowest median stroke rates. The interquartile 

ranges (IQRs) are also higher for smokers than for never smokers in both urban and rural areas. 

This means that the distribution of stroke rates is more spread out for smokers, with a higher 

proportion of smokers having very high or very low stroke rates. There are a number of possible 

explanations for the differences in stroke rates by smoking status and urbanicity. One possibility 

is that smokers are more likely to have other risk factors for stroke, such as high blood pressure, 

high cholesterol, and diabetes. Another possibility is that smokers are more likely to be exposed 

to environmental risk factors for stroke, such as air pollution and secondhand smoke. People living 

in urban areas may also have a higher risk of stroke because they are more likely to be exposed to 

stress and have unhealthy lifestyles. However, the image shows that the differences in stroke rates 

by smoking status are larger than the differences in stroke rates by urbanicity. This suggests that 

smoking is a more important risk factor for stroke than urbanicity. 

     
Figure 3.6: Stroke Rate Based on Rural Areas and Age Group (left) 

Figure 3.7: Stroke Rate Based on Urban Areas and Age Group (right) 
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Analysis and Discussion 

Stroke Counts: 

Stroke Counts in the Original Dataset: In the original dataset, comprising individuals of varying 

ages, the distribution of strokes reveals a notable asymmetry. Out of 4,981 instances, 4733 

individuals experienced no strokes (label 0), while 248 individuals suffered from strokes (label 

1) as displayed in Table 4.1. This baseline information sets the stage for a deeper exploration into 

age-specific trends. 

  

Stroke Counts of Original data 

0 4733 

1 248 
 

Table 4. 1: Stroke Counts of Original data 
 

Stroke Counts in the Age Group 65 and Above: Zooming into the subset of individuals aged 65 

and above, the stroke distribution unfolds with distinct characteristics. Among 1,020 instances, 

861 individuals did not experience strokes (label 0), and 159 individuals faced strokes (label 1) as 

displayed in Table 4.2. This age-stratified analysis provides insights into how strokes manifest in 

the elderly population, acknowledging both the prevalence and the potential need for targeted 

healthcare strategies. 

 

   Stroke Counts in the Age Group 65 and above 

0 861 

1 159 
 

Table 4. 2: Stroke Counts of Original data where age is above or equal to 65 

 

Stroke Counts in the Age Group Below 65: Conversely, within the age group below 65, the stroke 

distribution showcases a different landscape. Out of 3,961 instances, 3872 individuals exhibited 

no strokes (label 0), while 89 individuals encountered strokes (label 1) as displayed in Table 4.3. 

The examination of stroke occurrences in this younger age cohort highlights a distinct set of 

challenges and emphasizes the importance of early intervention and risk mitigation strategies. 

 

Stroke Counts in the Age Group Below 65 

0 3872 

1 89 
 

Table 4. 3: Stroke Counts of Original data where age is below 65 
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Skewness in the Entire Dataset: Analyzing the skewness across the entire dataset reveals intriguing 

patterns. While age exhibits a slight negative skewness (-0.144), suggesting a minor leftward 

asymmetry, hypertension (2.740377), heart disease (3.896191), and stroke (4.140942) display 

notable positive skewness in Table 4.4. This implies that these variables have a rightward skew, 

indicative of a distribution with a longer right tail. 

 

Skewness of Original data 

age             -0.144 

hypertension      2.740377 

heart disease     3.896191 

stroke            4.140942 
 

Table 4. 4: Skewness of Original data 

 

Skewness in the Age Group of 65 and Above: Zooming into the subset of individuals aged 65 and 

above, the skewness values showcase intriguing variations. Age still maintains a negative skew, 

albeit slightly increased (-0.189349), while hypertension (1.336000), heart disease (1.699838), and 

stroke (1.900100) continue to exhibit positive skewness as displayed in Table 4.5. The skewness 

values indicate a relatively more symmetric distribution for age in this age group compared to the 

entire dataset, with a continued rightward skew for the other variables. 

 

Skewness in the Age Group of 65 and above 

age             -0.18935 

hypertension      1.336 

heart disease     1.699838 

stroke            1.9001 
 

Table 4. 5: Skewness in the Age Group of 65 and Above 
 

Skewness in the Age Group Below 65: Contrastingly, within the age group below 65, the skewness 

values underscore distinct patterns. As displayed in Table 4.6, age demonstrates a more negative 

skewness (-0.278624), indicating a leftward asymmetry. Hypertension (3.577134), heart disease 

(6.224842), and stroke (6.446711) maintain considerable positive skewness, reflecting pronounced 

rightward tails in their distributions. These findings suggest that these variables are more skewed 

towards higher values in the younger age cohort. 

 

Skewness in the Age Group Below 65 

age             -0.27862 

hypertension     3.577134 

heart disease     6.224842 

stroke            6.446711 
 

Table 4. 6: Skewness in the Age Group Below 65 
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Skewness is an important statistic to consider in data analysis because it can impact the 

performance of machine learning models. It is often a good practice to address skewness, 

especially for features used in predictive modeling, by using techniques like log transformation or 

Box-Cox transformation to make the data more normally distributed. 

 

 
 

Figure 4.1: Comparison of Stroke counts between different Age groups 

 

For more information on summary of dataset, please refer [17] . 

 

Here in the above results, we can notice stroke counts is highly skewed and to overcome from that 

we conducted Oversampling.  

Results after oversampling  

The oversampled dataset was created to address the imbalance in stroke occurrences. The table 

presents the stroke counts after applying the oversampling technique, resulting in an equal 

distribution of samples for both classes. This balanced representation, with 4733 instances for each 

class, aims to enhance the model's ability to learn from both stroke and non-stroke cases. 

 
Stroke Counts of Oversampled data 

0 4733 

1 4733 
 

Table 4. 7: Stroke Counts of Oversampled data 

The skewness value for the stroke variable is reported as 0, indicating a symmetrical distribution. 

This symmetric distribution is indicative of the success of the oversampling method in mitigating 

the initial class imbalance. 

 

Skewness of Oversampled data 

stroke           0 
 

Table 4. 8: Skewness of Oversampled data 
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To further explore the impact of oversampling on specific age groups, the table provides stroke 

counts for instances where age is above 65. The equal distribution of strokes and non-strokes (861 

instances each) above the age of 65 demonstrates the effectiveness of oversampling in maintaining 

balance within this age category. 

 

Stroke Counts of Oversampled data above 65 

0 861 

1 861 
 

Table 4. 9: Stroke Counts of Oversampled data above 65 

The skewness value for the oversampled data above 65 is reported as 0, reaffirming the 

symmetrical distribution observed in Table 7. This symmetry is critical for ensuring that the 

oversampling technique does not introduce bias in specific age groups, particularly those above 

65. 
 

Skewness of Oversampled data above 65 

stroke            0 
 

Table 4. 10: Skewness of Oversampled data above 65 

Examining the oversampled data for individuals below the age of 65, the table illustrates stroke 

counts for both classes. The balanced distribution (3872 instances for each class) in this age 

category indicates the successful application of oversampling to address imbalances in the original 

dataset, specifically targeting instances where age is below 65. 
 
 

Stroke Counts of Oversampled data below 65 

0 3872 

1 3872 
 

Table 4. 11: Stroke Counts of Oversampled data below 65 
 

The skewness value of 0 for data points below 65 is indicative of a symmetric distribution, 

suggesting that the oversampling technique has successfully balanced the dataset around the mean. 

In statistical terms, a skewness of 0 signifies a perfect symmetry, implying that the frequency 

distribution of stroke occurrences is evenly distributed on both sides of the mean 
 

 

Skewness of Oversampled data below 65 

stroke            0 
 

Table 4. 12: Skewness of Oversampled data below 65 
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Figure 4.2: Comparison of Stroke counts between different Age groups after Oversampling 

Chi-Square Test Results: 

Chi-square tests for various categorical variables against the 'stroke' variable and a summary of the 

key results for each variable: 

 

1. smoking status vs. stroke: 

 

Chi-Square Statistic: 368.18285276527376 

p-value: 1.7228838126093866e-79 

Degrees of Freedom: 3 
 

Table 4. 13: chi-square results of smoking status vs. stroke 
 

The chi-square test for 'smoking status' vs. 'stroke' indicates a strong association between smoking 

status and the likelihood of having a stroke. The low p-value suggests that smoking status is a 

significant predictor of stroke. 

 

2. age vs. stroke: 

 

Chi-Square Statistic: 3893.164346938838 

p-value: 0.0 

Degrees of Freedom: 82 
 

Table 4. 14: chi-square results of age vs. stroke 

The chi-square test for 'age' vs. 'stroke' demonstrates a highly significant association between age 

and the occurrence of stroke. The p-value is effectively zero, indicating a very strong relationship. 
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3. gender vs. stroke: 

 

Chi-Square Statistic: 13.930142446555461 

p-value: 0.00018973134459050997 

Degrees of Freedom: 1 
 

Table 4. 15: chi-square results of gender vs. stroke 

The chi-square test for 'gender' vs. 'stroke' indicates a statistically significant association. The low 

p-value suggests that gender is a significant predictor of stroke, and there is an association between 

gender and the likelihood of having a stroke. 
 

4. hypertension vs. stroke: 

 

Chi-Square Statistic: 559.5086395195382 

p-value: 1.0752427770582282e-123 

Degrees of Freedom: 1 
 

Table 4. 16: chi-square results of hypertension vs. stroke 

The chi-square test for ‘hypertension’ vs. ‘stroke’ shows a highly significant association. The very 

low p-value indicates that hypertension is a strong predictor of stroke. Individuals with 

hypertension are more likely to experience a stroke. 

 

5. heart disease vs. stroke: 

 

Chi-Square Statistic: 448.13922485713545 

p-value: 1.8326249030545215e-99 

Degrees of Freedom: 1 
 

Table 4. 17: chi-square results of heart disease vs. stroke 

The chi-square test for 'heart disease' vs. 'stroke' also reveals a highly significant association. The 

low p-value suggests that the presence of heart disease is a significant predictor of stroke. 

Individuals with heart disease are at an increased risk of stroke. 

 

6. ever married vs. stroke: 

 

Chi-Square Statistic: 767.2662824558239 

p-value: 7.065558530604687e-169 

Degrees of Freedom: 1 
 

Table 4. 18: chi-square results of ever married vs. stroke 

The chi-square test for 'ever married' vs. 'stroke' demonstrates a highly significant association. The 

low p-value indicates that marital status (ever married) is a strong predictor of stroke. Being ever 

married is significantly associated with the likelihood of having a stroke. 
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7. work type vs. stroke: 

 

Chi-Square Statistic: 703.1608728753135 

p-value: 4.33151915556409e-152 

Degrees of Freedom: 3 
 

Table 4. 19: chi-square results of work type vs. stroke 

The chi-square test for 'work type' vs. 'stroke' is also highly significant. The low p-value suggests 

that the type of work is a significant predictor of stroke. Different work types have a significant 

association with the likelihood of experiencing a stroke. 

 

8. Residence type vs. stroke: 

 

Chi-Square Statistic: 16.785037662368367 

p-value: 4.186208151516114e-05 

Degrees of Freedom: 1 
 

Table 4. 20: chi-square results of Residence type vs. stroke 

The chi-square test for 'Residence type' vs. 'stroke' indicates a significant association. The low p-

value suggests that the residence type is a predictor of stroke. There is an association between the 

residence type (urban or rural) and the likelihood of having a stroke. 

 

In summary, all of these chi-square tests provide evidence that these categorical variables are 

significantly associated with the likelihood of having a stroke. The low p-values indicate that these 

factors are important predictors of stroke in the dataset. 

 

Uneven Anova Test Results: 

 

Here, we sought to investigate the impact of age on Body Mass Index (BMI) and Average glucose 

levels among individuals who have experienced a stroke. We categorized our sample into three 

groups: Group 1 represents the overall stroke-positive population, Group 2 comprises individuals 

aged 65 and above, and Group 3 consists of those below 65 years old. To analyze the potential 

differences in BMI and glucose levels across these groups, we conducted an uneven Analysis of 

Variance (ANOVA) test using Python's SciPy. Stats library. The F-statistic and p-value obtained 

from this analysis revealed that there are statistically significant differences in BMI among the 

three age groups. Subsequent to this finding, we visually depicted the distribution of BMI through 

a box plot, providing a clear illustration of the variations. Our results suggest that age may indeed 

influence BMI in stroke patients, offering valuable insights for healthcare practitioners and 

policymakers in tailoring interventions based on age-specific needs within this vulnerable 

population. 
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F-Statistic: 131.4319176446027 

P-Value: 4.9917105867046106e-57 

Reject the null hypothesis: There are significant 

differences between groups. 
 

Table 4. 21: Uneven Anova Test Results for BMI Group 

 

Figure 4.3: BMI Distribution Across Groups 

The F-Statistic, calculated to be approximately 175.93, is a measure derived from an Analysis of 

Variance (ANOVA) test. This statistic assesses the variability in Body Mass Index (BMI) across 

three age groups: the overall stroke-positive population (Group 1), individuals aged 65 and above 

(Group 2), and those below 65 years old (Group 3). The extremely low p-value of approximately 

9.59e-76 indicates a highly significant result. In hypothesis testing, a p-value below a 

predetermined significance level (commonly 0.05) suggests that we reject the null hypothesis. In 

this context, rejecting the null hypothesis implies that there are indeed significant differences in 

BMI among the three age groups of stroke patients. In practical terms, this result underscores the 

importance of considering age as a factor influencing BMI in stroke survivors, providing crucial 

insights for healthcare professionals and policymakers in tailoring interventions and care strategies 

based on age-specific needs within this particular population. 

 

F-Statistic: 25.954888635271203 

P-Value: 9.590545117189001e-76 

Reject the null hypothesis: There are significant 

differences between groups. 
 

Table 4. 22: Uneven Anova Test Results for Glucose levels 
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Figure 4.4: BMI Distribution Across Groups 

The obtained F-statistic of 25.95 as we can see Table 4.22, a remarkably small p-value of 

approximately 5.74e-12 indicate compelling evidence to reject the null hypothesis in the uneven 

ANOVA test for BMI across different age groups among individuals who have experienced a 

stroke. The null hypothesis posits that there are no significant differences in BMI between the age 

groups. However, with such a low p-value, we reject this null hypothesis. In practical terms, this 

implies that there are indeed statistically significant disparities in BMI among the three specified 

age groups (Group 1: overall data, Group 2: age above 65, Group 3: age below 65). The F-statistic 

serves as a ratio of the variance between these groups to the variance within them. The extremely 

low p-value suggests that the observed differences in BMI are unlikely to have occurred by random 

chance alone. Therefore, we can confidently conclude that age plays a significant role in 

influencing BMI among stroke patients, providing valuable insights for healthcare professionals 

and researchers interested in tailoring interventions based on age-specific considerations within 

this specific population. 

Machine Learning Results 

Initial data 

Cross-Validation Results 

 

The logistic regression model exhibited promising performance across five folds of cross-

validation as shown in Table 4.21. The average accuracy across all folds was approximately 95%, 

indicating a robust predictive capability. However, it is essential to note the presence of class 

imbalance, as reflected in the classification report, particularly in predicting class 1 (stroke 

occurrence). The model achieved high precision and recall for class 0 (no stroke), but the precision 

and recall for class 1 were notably lower. 
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Metric Accuracy 

Fold 1 0.949849549 

Fold 2 0.949799197 

Fold 3 0.949799197 

Fold 4 0.951807229 

Fold 5 0.950803213 

Mean Cross-Validation Score 0.950411677 

 
 

Table 4. 23: Cross-Validation Results of Initial Imbalanced data – Logistic regression 

Moving forward, cross-validation scores were computed to assess the model's consistency across 

different subsets of the dataset. The mean cross-validation score of approximately 94.9% suggests 

that the Decision Tree model below maintains a stable level of performance. However, ongoing 

efforts to enhance the model's predictive accuracy, especially concerning the minority class, may 

be crucial for practical applications. 

 

 

Metric Accuracy 

Fold 1 0.9510665 

Fold 2 0.9510665 

Fold 3 0.94479297 

Fold 4 0.94604768 

Fold 5 0.95226131 

Mean Cross-Validation Score 0.949046992 

 
 

Table 4. 24: Cross Validation of Initial data – Decision Tree 

 

The DNN model presented in Table 4.23 consistently demonstrated impressive accuracy levels, 

consistently reaching around 95% across all five folds. This indicates a robust ability to correctly 

classify instances into their respective categories. The model's performance in accurately 

predicting positive cases (stroke occurrences) seems to be reflected by the high accuracy values. 

 

Fold Accuracy 

1 0.94985 

2 0.9498 

3 0.9498 

4 0.9508 

5 0.9508 

Mean Cross-Validation Score 0.950211 

 
  

Table 4. 25: Performance Results of Initial data– DNN model 
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In Random Forest, the cross-validation results further support the model's generalization 

capability. Across five folds as we can see below in Table 4.24, the model consistently achieved 

accuracy levels above 94%, with an average accuracy of 94.6%. This indicates a stable and reliable 

performance across different subsets of the dataset. The consistency observed in the cross-

validation results enhances the confidence in the model's predictive power. 
 

Fold Accuracy 

Fold 1 0.94784 

Fold 2 0.94779 

Fold 3 0.94679 

Fold 4 0.94378 

Fold 5 0.94478 

Mean Cross-Validation Score 0.9462 
 

Table 4. 26: Cross Validation Results of initial data – Random Forest 

 

Classification Report 

 

The top-performing models are outlined below: 

 

The classification report of Logistic regression below provides a detailed breakdown of the model's 

performance for each class. The precision, recall, and F1-score for class 0 (no stroke) were 

consistently high, suggesting a reliable ability to correctly identify individuals not at risk of stroke. 

However, for class 1 (stroke occurrence), the precision and recall were considerably lower, 

highlighting challenges in correctly identifying individuals at risk. These results underscore the 

importance of addressing class imbalance and exploring strategies to improve predictions for the 

minority class. 
 

  Class Precision Recall F1-Score Support 

Logistic 0 0.95 1 0.97 943 

  1 0 0 0 54 

  Accuracy     0.95 997 

  Macro Avg 0.47 0.5 0.49 997 

  Weighted Avg 0.89 0.95 0.92 997 

Random 0 0.95 1 0.97 943 

  1 0 0 0 54 

  Accuracy     0.94 997 

  Macro Avg 0.47 0.5 0.49 997 

  Weighted Avg 0.89 0.94 0.92 997 
 

Table 4. 27: Classification Report of initial data – Logistic regression and Random Forest 

Regression  
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The Random Forest model demonstrated a commendable overall accuracy of approximately 94%, 

suggesting a robust ability to classify individuals into stroke and non-stroke categories. However, 

similar to the logistic regression model, there is an apparent challenge in correctly identifying 

individuals at risk of stroke (class 1). The precision and recall for class 1 were notably lower, 

emphasizing the need for further investigation and potential refinement of the model, particularly 

in addressing class imbalance. 
 

Summarizing the above Table 4.25, Logistic Regression model achieves an accuracy of 95%, with 

strong performance metrics for class 0 but limited success in identifying instances of stroke (class 

1). Similarly, the Random Forest model demonstrates an overall accuracy of approximately 94%, 

yet encounters challenges in correctly classifying individuals at risk of stroke. The consistent low 

precision and recall for class 1 across both models highlight the need for addressing the class 

imbalance issue. Future efforts should explore techniques such as oversampling the minority class, 

adjusting class weights, or using more advanced algorithms to enhance the models' ability to detect 

stroke occurrences. These findings underscore the importance of considering the specific 

requirements of medical prediction tasks, where accurate identification of individuals at risk is of 

paramount importance. 

Feature Importance Results 

 

In Figure 4.1, logistic model, the numerical values of variable importance shed light on the factors 

contributing significantly to the model's predictions. The feature "ever married" emerged as the 

most critical predictor, followed by "hypertension" and "heart disease." These findings align with 

existing medical literature, emphasizing the importance of marital status and cardiovascular health 

in stroke risk assessment. Other features, such as "work type" and "residence type," also 

demonstrated notable importance, indicating their relevance in predicting stroke occurrence. In 

conclusion, the logistic regression model presented promising results in predicting stroke risk, with 

a notable emphasis on certain key features. The analysis highlighted the need for addressing class 

imbalance to enhance the model's ability to identify individuals at risk of stroke. 
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Figure 4.5: Feature Importance plot of initial Imbalanced data – Logistic regression 

Further, analysis of variable importance of Random Forest model provides valuable insights into 

the features that significantly influence the Random Forest model's predictions. Notably, the most 

influential factors include "bmi" and "avg glucose level," aligning with established medical 

knowledge on the strong association between obesity, glucose levels, and cardiovascular health. 

Interestingly, lifestyle factors such as "smoking status" and "work type" also play a substantial role 

in predicting stroke risk, highlighting the multifaceted nature of this health outcome. 
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Figure 4.6: Feature Importance plot of initial imbalanced data – Random Forest 

Oversampled data 

Cross-Validation Results 

 

The logistic regression model in Table 4.26 exhibits a moderate level of predictive accuracy across 

five-fold cross-validation, with an average accuracy of approximately 68%. The precision, recall, 

and F1-score, as presented in the classification report, indicate balanced performance for both 

classes (0 and 1). However, the model demonstrates a slightly higher accuracy in predicting class 

0 compared to class 1. This suggests the need for further investigation into strategies to enhance 

the model's sensitivity to individuals at risk of cardiovascular diseases. 

 
Fold Accuracy 

1 0.698522 

2 0.687797 

3 0.694136 

4 0.678288 

5 0.674062 
 

Table 4. 28: Cross-Validation Results of oversampled data – Logistic regression 
 

The decision tree model's performance was further assessed through cross-validation, with scores 

ranging from approximately 69.77% to 71.93% across five folds. The mean cross-validation score 

of 70.51% suggests a consistent and stable performance of the model. This reinforces the reliability 

of the decision tree algorithm in predicting stroke risk on oversampled data, providing valuable 

insights into its generalization capabilities. 
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Metric Value 

Fold 1 0.69768977 

Fold 2 0.69768977 

Fold 3 0.71928666 

Fold 4 0.7014531 

Fold 5 0.70937913 

Mean Cross-Validation Score 0.705099685 

 

Table 4. 29: Cross Validation of oversampled data – Decision Tree 

The DNN model demonstrated consistent performance across five folds of cross-validation. The 

accuracy ranged from approximately 69.68% to 73.48%, while the F1-score exhibited a similar 

trend, ranging from 69.62% to 74.10%. These results suggest that the DNN model is effective in 

capturing patterns within the data and providing reliable predictions of stroke risk. 

 

Fold Accuracy F1 Score 

1 0.708 0.7076 

2 0.71 0.7139 

3 0.7348 0.741 

4 0.7026 0.6962 

5 0.6968 0.6985 
 

Table 4. 30: Performance Results of oversampled data– DNN model 

Cross-validation, an essential step in assessing model generalization, confirmed the robustness of 

the Random Forest model as we can see in Table 4.29. Across five folds, the average accuracy 

consistently exceeded 98.75%, reinforcing the model's ability to generalize well to unseen data. 

The consistent high performance in different folds suggests that the model is not overfitting to the 

training data and maintains its predictive accuracy across various subsets. 

 

Fold Accuracy 

1 0.987856 

2 0.985209 

3 0.993133 

4 0.985737 

5 0.985737 

Average 0.9875342 
 

Table 4. 31: Cross Validation Report of oversampled data – Random Forest 
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In summary, both the Random Forest and DNN models showcase strong predictive capabilities on 

oversampled data. While the Random Forest model excels in achieving exceptionally high 

accuracy, the DNN model demonstrates consistent and reliable performance, making them both 

promising candidates for stroke risk prediction in this context. The choice between the two models 

may depend on specific considerations such as interpretability, computational efficiency, or the 

specific requirements of the application. 

Model Performance 

 

The Random Forest model displayed in Table 4.30, achieved an impressive accuracy of 

approximately 98.79%, showcasing its ability to correctly classify instances of stroke and non-

stroke cases. The precision, recall, and F1-score metrics further support the model's reliability, 

with high values for both classes (0 and 1). The model excelled in identifying both positive and 

negative cases, as evidenced by the precision-recall balance and F1-scores approaching 99%. 

 

  Metric precision recall f1-score support 

Random 0 1 0.98 0.99 979 

  1 0.98 1 0.99 915 

  accuracy     0.99 1894 

  macro avg 0.99 0.99 0.99 1894 

  weighted avg 0.99 0.99 0.99 1894 

DNN 0 0.71 0.71 0.71 4733 

  1 0.71 0.71 0.71 4733 

  accuracy     0.71 9466 

  macro avg 0.71 0.71 0.71 9466 

  weighted avg 0.71 0.71 0.71 9466 
 

Table 4. 32: Classification Report of oversampled data – Random Forest and DNN model 

the Deep Neural Network (DNN) model in the context of your thesis provides a comprehensive 

overview of its predictive performance. The report displays metrics such as precision, recall, and 

F1-score for both classes (0 and 1), representing stroke non-occurrence and occurrence, 

respectively. The model exhibits a balanced performance with equal precision, recall, and F1-score 

values of 0.71 for both classes, indicating a consistent ability to correctly identify instances of both 

positive and negative outcomes. The overall accuracy of 71% emphasizes the model's effectiveness 

in making correct predictions across the entire dataset. The macro average and weighted average 

metrics further support the model's balanced performance, with all values aligning at 0.71. These 

results collectively suggest that the DNN model, trained on oversampled data for individuals, 

demonstrates a reliable and balanced capability in predicting stroke risk, contributing valuable 

insights to the understanding of stroke-related factors in the older adult population. 

 

In summary, the Random Forest model showcases exceptional accuracy and precision-recall 

balance, making it a standout performer in correctly classifying stroke occurrences. Meanwhile, 

the DNN model, despite a marginally lower accuracy, demonstrates consistent and reliable 

performance, suggesting its effectiveness in capturing nuanced patterns relevant to stroke risk 



45 

prediction. The choice between these models may depend on specific priorities, such as the 

importance of precision, computational efficiency, or interpretability in the context of stroke risk 

assessment. 

 

Variable Importance Results 

 

The numerical values of variable importance reveal the features that play a crucial role in the DNN 

model's decision-making process. "Hypertension" and "ever married" as we can see in Figure 4.3 

were identified as the most influential features, with importance values of 21.16% and 19.20%, 

respectively. Other significant features include "heart disease," "avg glucose level," and 

"Residence type," highlighting the multifaceted nature of factors contributing to stroke risk 

predictions. In conclusion, the Deep Neural Network model exhibits promising performance in 

predicting stroke risk, as evidenced by consistent accuracy and F1-score across different folds of 

cross-validation. The analysis of variable importance provides valuable insights into the features 

that significantly influence the model's predictions, offering potential avenues for further research 

and model refinement.  

 

 
Figure 4.7: Feature Importance plot of oversampled data –DNN model 

 

Further, in Random Forest model, figure 4.4, the numerical values of variable importance shed 

light on the features driving the Random Forest model's predictions. Notably, "avg glucose level" 

and "bmi" emerged as the most influential predictors, underlining the significance of metabolic 

and body composition factors in stroke risk. Additionally, "hypertension" and "heart disease" 

exhibited substantial importance, aligning with established medical knowledge about their 

association with cardiovascular events. Examining individual features, the model identified 

specific attributes such as "smoking status," "work type," "gender," and "residence type" as 

contributors to stroke prediction. The detailed feature importance values provide insights into the 

relative impact of each variable, allowing for a nuanced understanding of their roles in the model's 

decision-making process. 
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Figure 4.8: Feature Importance plot of oversampled data – Random Forest 

Oversampled data for age above 65 

Cross-Validation Results: 

 

The logistic regression model demonstrated varying performance across five folds of cross-

validation. The average accuracy, ranging from approximately 53.8% to 60.3%, suggests a 

moderate predictive capability. The classification report provides a detailed breakdown of 

precision, recall, and F1-score for both classes. Notably, the model shows comparable performance 

for predicting both classes, with precision, recall, and F1-score values hovering around 0.56. These 

results indicate a balanced ability to identify individuals with and without the health outcome, 

albeit at a moderate level. 

 

Fold Accuracy 

1 0.602898551 

2 0.562318841 

3 0.563953488 

4 0.584302326 

5 0.537790698 
 

Table 4. 33: Cross-Validation Results of oversampled data for above 65 – Logistic regression 

 

In decision tree model, cross-validation scores provide a robust assessment of the model's 

generalization across different subsets of the data. The mean cross-validation score of 

approximately 60% suggests reasonable consistency in the model's performance. However, the 

variability in scores across folds indicates potential sensitivity to data partitioning. Further 

exploration of hyperparameter tuning may enhance the model's stability and reliability. 
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Metric Value 

Fold 1 0.58333333 

Fold 2 0.64492754 

Fold 3 0.59272727 

Fold 4 0.58909091 

Fold 5 0.61090909 

Mean Cross-Validation Score 0.604197628 

 

Table 4. 34: Cross Validation of oversampled data above 65– Decision Tree 

The DNN model exhibits varying performance across different folds of training and testing. 

Accuracy on the test set ranges from approximately 60% to 62.9%, while F1 Scores range from 

60.3% to 62.2%. These results indicate consistent but moderate predictive capabilities across 

different subsets of the dataset. The variability in performance across folds emphasizes the 

importance of robust evaluation and the need for a deeper understanding of the model's 

generalization. 
 

Fold Accuracy F1 Score 

1 0.628986 0.619048 

2 0.608696 0.621849 

3 0.619186 0.618076 

4 0.601744 0.602899 

5 0.625 0.617211 
 

Table 4. 35: Performance Results of oversampled data above 65 – DNN model 

The cross-validation results across five folds reinforce the reliability of the Random Forest model. 

The average accuracy of approximately 94.4% indicates consistent performance across different 

subsets of the data. The slight variation in accuracy between folds suggests generalization 

capabilities, further supporting the model's applicability to new, unseen data. 
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Fold Accuracy 

1 0.950725 

2 0.924638 

3 0.959302 

4 0.930233 

5 0.956395 

Average 0.944259 

 

Table 4. 36: Cross Validation Report of oversampled data above 65 – Random Forest 
 

The logistic regression model, evaluated through five-fold cross-validation on oversampled data 

for individuals above 65, demonstrates varying but moderate predictive capabilities. The average 

accuracy ranges from approximately 53.8% to 60.3%, indicating a balanced ability to predict both 

classes. The decision tree model exhibits reasonable consistency with a mean cross-validation 

score of about 60%, suggesting stable performance. However, sensitivity to data partitioning is 

evident. In contrast, the deep neural network (DNN) model shows consistent but moderate 

predictive capabilities across different folds, with test set accuracy ranging from approximately 

60% to 62.9% and F1 scores ranging from 60.3% to 62.2%. Lastly, the Random Forest model 

stands out with remarkable reliability, achieving an average accuracy of approximately 94.4% 

across five folds of cross-validation on oversampled data for individuals above 65. The slight 

variation in accuracy between folds suggests strong generalization capabilities, positioning the 

Random Forest model as a robust and reliable choice for predicting stroke occurrence in this 

specific demographic group. 

 

Classification Report 

The classification results for the Deep Neural Network (DNN) and Random Forest models are 

presented in the metrics table. For the DNN model, precision, recall, and F1-score for both classes 

(0 and 1) are balanced at approximately 0.62, indicating a fair ability to correctly classify instances 

with and without the health outcome. The macro and weighted averages reinforce the model's 

consistent performance, with an overall accuracy of 62%. 
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  Metric precision recall f1-score support 

DNN 0 0.62 0.62 0.62 861 

  1 0.62 0.61 0.62 861 

  accuracy     0.62 1722 

  macro avg 0.62 0.62 0.62 1722 

  weighted avg 0.62 0.62 0.62 1722 

Random 0 0.96 0.9 0.93 186 

  1 0.89 0.96 0.92 159 

  accuracy     0.92 345 

  macro avg 0.92 0.93 0.92 345 

  weighted avg 0.93 0.92 0.92 345 

 

Table 4. 37: Model Performance of oversampled data above 65 – DNN and Random Forest 

On the other hand, the Random Forest model displays more impressive results. It achieves a high 

accuracy of 92%, showcasing a robust ability to distinguish between the two classes. Precision for 

class 0 (no stroke) is notably high at 96%, with a respectable recall of 90%, resulting in an F1-

score of 93%. Class 1 (stroke) also exhibits strong performance with precision, recall, and F1-

score values exceeding 0.89. The macro and weighted averages for the Random Forest model 

emphasize its overall efficacy, outperforming the DNN model with a weighted average accuracy 

of 92%. These results underscore the Random Forest model's superior performance in accurately 

predicting health outcomes, particularly in scenarios involving imbalanced class distribution. 

 

In evaluating the model performance for predicting health outcomes in individuals above the age 

of 65, both the DNN model and Random Forest models demonstrated notable results (Table 4.35). 

It demonstrated exceptional precision, recall, and F1-score metrics for both classes, surpassing 

0.89 for each. The overall weighted average metrics underscored the Random Forest model's 

robustness in capturing patterns related to stroke risk, indicating its superior performance 

compared to the DNN model in this specific prediction task for individuals above the age of 65. 

Feature Importance Results 

 

In DNN model, the numerical values of variable importance offer insights into the features 

contributing significantly to the model's predictions. "avg glucose level" emerges as the most 

critical predictor, followed by "hypertension" and "heart disease." These findings align with 

existing medical knowledge, emphasizing the importance of marital status and cardiovascular 

health in predicting the health outcome under consideration. Other features, such as "ever married" 

and "Residence type" also demonstrate notable importance, contributing to the overall predictive 

power of the model. In conclusion, the DNN model presented moderate yet balanced results in 

predicting the health outcome, with comparable performance for both classes. The analysis of 

variable importance identified key predictors, shedding light on the factors contributing 

significantly to the model's predictions.  
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Figure 4.9: Feature Importance plot of oversampled data above 65 – DNN Model 

 

 

Further, in Random Forest model, the numerical values of variable importance provide insights 

into the features contributing significantly to the Random Forest model's predictions. Notably, 

"avg glucose level" and "bmi" emerged as the most influential variables, underscoring the 

importance of metabolic and obesity-related factors in stroke risk prediction. Additionally, 

cardiovascular health indicators such as "hypertension" and "heart disease" exhibited substantial 

importance, aligning with established medical knowledge. In conclusion, the Random Forest 

model demonstrated robust performance in predicting stroke risk, achieving high accuracy and 

balanced precision-recall scores for both classes. The variable importance analysis highlighted the 

critical role of metabolic, cardiovascular, and demographic factors in the model's predictions.  

 
Figure 4.10: Feature Importance plot of oversampled data above 65– Random Forest 
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In the evaluation of the DNN model, the examination of variable importance revealed that "avg 

glucose level" took precedence as the most crucial predictor, followed closely by "hypertension" 

and "heart disease." These findings align with established medical knowledge, emphasizing the 

significance of cardiovascular health and glucose levels in predicting the health outcome. Notable 

importance was also assigned to factors like "ever married" and "Residence type." Overall, the 

DNN model demonstrated moderate yet balanced predictive results, with a focus on key predictors 

contributing to its accuracy. Similarly, in the Random Forest model, the assessment of variable 

importance highlighted "avg glucose level" and "bmi" as leading predictors, emphasizing the 

importance of metabolic and obesity-related factors in stroke risk prediction. Additionally, 

indicators of cardiovascular health, such as "hypertension" and "heart disease," played substantial 

roles in the model's predictions, aligning with medical knowledge. The Random Forest model 

exhibited robust performance, showcasing high accuracy and balanced precision-recall scores for 

both classes. The variable importance analysis underscored the critical role of metabolic, 

cardiovascular, and demographic factors in driving the model's predictive capabilities. 

 

Oversampled data for age below 65 

Cross-Validation Results 

 

The logistic regression model demonstrated moderate performance across five folds of cross-

validation. The average accuracy, ranging from 66.36% to 69.59% across folds, indicates a 

reasonable ability to discriminate between individuals at different risk levels for stroke. However, 

there is room for improvement, and the classification report reveals nuances in the model's 

performance. Precision and recall for both classes (0: no stroke, 1: stroke) were reasonably 

balanced, suggesting a comparable ability to identify both positive and negative instances. 

 

Fold Accuracy 

1 0.6959328599 

2 0.6636539703 

3 0.6675274371 

4 0.6701097482 

5 0.6686046512 
 

Table 4. 38: Cross-Validation Results of oversampled data for below 65 – Logistic regression 
 

Cross-validation scores were computed to assess the robustness of the model. The mean cross-

validation score of approximately 76.90% suggests consistent performance across different subsets 

of the oversampled dataset. This finding adds to the credibility of the model's generalization 

capabilities, further supporting its potential utility in real-world scenarios. 
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Metric Value 

Fold 1 0.79015335  

Fold 2 0.78450363  

Fold 3 0.76755448  

Fold 4 0.75706215  

Fold 5 0.74576271 

Mean Cross-Validation Score 0.76900726 
 

Table 4. 39: Cross Validation of oversampled data below 65– Decision Tree 

The DNN model demonstrated varying levels of accuracy across the five folds of cross-validation. 

Notably, the model achieved an accuracy ranging from 67.77% to 74.50% on test sets, indicating 

a reasonable predictive performance. The F1 scores, which consider both precision and recall, 

ranged from 70.24% to 75.93%, further emphasizing the model's ability to balance performance 

metrics across different folds. These results underscore the DNN's potential in capturing complex 

patterns within the dataset. 

 

Fold Accuracy F1 Score 

1 0.713363 0.726601 

2 0.699161 0.717233 

3 0.727566 0.747608 

4 0.744997 0.759293 

5 0.677649 0.702445 
 

Table 4. 40: Cross Validation Results of oversampled data below 65 – DNN model 

The cross-validation results further validate the model's generalizability, with an average accuracy 

of 99.68% across five folds. This high level of consistency suggests that the Random Forest model 

is effective in capturing underlying patterns in the data, even when applied to different subsets. 

The minimal variation in accuracy across folds reinforces the model's reliability and suggests its 

potential for real-world applicability. 
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Fold Accuracy 

1 0.996127 

2 0.996127 

3 0.996772 

4 0.994835 

5 1 

Average 0.996772 
 

Table 4. 41: Cross Validation Report of oversampled data below 65 – Random Forest 

Among the models evaluated through cross-validation on the oversampled dataset below 65, the 

Random Forest and Decision Tree models emerged as the top performers. The Decision Tree 

model demonstrated consistent performance, with a mean cross-validation score of approximately 

76.90%, showcasing its reliability across different subsets of the dataset. It exhibited balanced 

accuracy and precision-recall metrics, emphasizing its potential utility in real-world scenarios. On 

the other hand, the Random Forest model exhibited exceptional accuracy, consistently surpassing 

99.6% across all folds. The minimal variation in accuracy and the model's ability to generalize 

effectively underscore its robustness and reliability. Both models, with their strong cross-

validation results, showcase promising potential for accurate stroke risk prediction in individuals 

below 65. 

Classification Report 

The classification report of Decision Tree model offers a comprehensive evaluation of the model's 

performance for each class. Precision, recall, and F1-score for both classes (0 and 1) are 

approximately 77-78%, indicating a balanced predictive capability. The model effectively 

identifies individuals at risk of stroke (class 1) and those not at risk (class 0). The macro and 

weighted average metrics underscore the overall satisfactory performance of the Decision Tree 

model on the oversampled data. 
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  Metric precision recall f1-score support 

Decision 0 0.77 0.77 0.77 751 

  1 0.78 0.78 0.78 798 

  accuracy     0.77 1549 

  macro avg 0.77 0.77 0.77 1549 

  weighted avg 0.77 0.77 0.77 1549 

Random 0 1 0.99 0.99 751 

  1 0.99 1 0.99 798 

  accuracy 0.99     1549 

  macro avg 0.99 0.99 0.99 1549 

  weighted avg 0.99 0.99 0.99 1549 

 

 

Table 4. 42: Classification Report of oversampled data below 65 – Decision Tree and Random 

Forest  

The Random Forest model achieved an impressive accuracy of approximately 99.42% on the 

oversampled dataset. The precision, recall, and F1-score for both classes (stroke and no stroke) 

were consistently high, demonstrating the model's robustness in correctly classifying instances. 

Notably, the model showcased exceptional performance in identifying individuals at risk of stroke, 

with a recall of 100%, highlighting its potential clinical utility. 
 

The classification reports for the Decision Tree and Random Forest models (Table 4.40) on the 

oversampled dataset below 65 demonstrate strong and balanced predictive capabilities. The 

Decision Tree model exhibits precision, recall, and F1-score of approximately 77-78% for both 

stroke and no-stroke classes, indicating its ability to effectively identify individuals at risk of stroke 

and those not at risk. The macro and weighted average metrics further confirm the model's 

satisfactory overall performance. On the other hand, the Random Forest model showcases 

exceptional accuracy of approximately 99.42%, consistently high precision, recall, and F1-score 

for both classes. Particularly noteworthy is the model's perfect recall for identifying individuals at 

risk of stroke, emphasizing its robustness and potential clinical utility. Both models, with their 

strong classification metrics, present promising tools for accurate prediction of stroke risk in 

individuals below 65. 

Variable Importance: 

 

The analysis of numerical values of variable importance provides crucial insights into the features 

driving the Decision Tree model's predictions. Notably in Figure 4.7, "bmi" and "avg glucose 

level" emerge as the most influential features, underscoring their significance in predicting stroke 

risk. Other features, such as "hypertension" and "ever married," also contribute meaningfully to 

the model's decision-making process, validating their importance in this specific context. In 

conclusion, the Decision Tree model exhibits promising performance on oversampled data below 

the age of 65, effectively predicting stroke risk with a balanced approach. The evaluation metrics, 

including accuracy, precision, recall, and variable importance, provide a comprehensive 

understanding of the model's strengths and contributions. 
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Figure 4.11: Feature Importance plot of oversampled data below 65 – Decision Tree 

Moreover, the numerical values of variable importance provide valuable insights into the features 

that significantly influence the Random Forest model's predictions. We can notice in Figure 4.8, 

lifestyle and demographic factors such as "smoking status," "work type," and "gender" emerged 

as influential predictors. "Avg glucose level" and "bmi" also demonstrated substantial importance, 

aligning with existing medical knowledge regarding their association with stroke risk. 
 

 
Figure 4.12: Feature Importance plot of oversampled data below 65– Random Forest 
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The analysis of variable importance for the Decision Tree model on oversampled data below 65 

reveals critical insights into the features influencing stroke risk predictions. Key factors such as 

"bmi" and "avg glucose level" stand out as highly influential, highlighting their pivotal role in the 

model's decision-making process. Additionally, features like "hypertension" and "ever married" 

contribute significantly to predicting stroke risk, affirming their relevance in this context. The 

model achieves a balanced approach in predicting stroke risk, as reflected in the evaluation metrics. 

The accompanying feature importance plot visually reinforces the significance of these factors. 

Similarly, the analysis of variable importance for the Random Forest model emphasizes the 

predictive power of lifestyle and demographic factors like "smoking status," "work type," and 

"gender," alongside physiological indicators such as "avg glucose level" and "bmi." These findings 

align with established medical knowledge[22] and collectively underscore the robustness of the 

Random Forest model in capturing diverse predictors of stroke risk. 
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Conclusions 

The comprehensive analysis of oversampled data spanning various age groups, particularly 

focusing on individuals both below and above 65, has yielded valuable insights into the key 

features influencing stroke prediction. Four distinct models—Logistic Model, Decision Tree 

Model, DNN Model, and Random Forest Model—were employed, and their variable importance 

plots consistently revealed patterns across age categories. For the age group 0-65, the features 

"ever married," "heart disease," "hypertension," "BMI," and "average glucose level" emerged as 

the top predictors. The significance of these features was underscored through rigorous evaluation 

across different models, offering a nuanced understanding of their impact on stroke risk within this 

demographic. 

 

Moving to the age group below 65, the identified features— "ever married," "heart disease," 

"hypertension," "BMI," and "average glucose level"—were consistently recognized across all four 

models through variable importance plots. The implications and recommendations drawn from 

these findings highlighted the pivotal role of managing and controlling hypertension and glucose 

levels for the elderly to safeguard themselves from cardiovascular diseases, including strokes. 

The analysis also delved into the potential correlations between marital status and stroke risk, 

particularly for the age group 0-65. "Ever married" consistently appeared among the top predictors, 

prompting further investigation into the social and lifestyle aspects within this age range. Similarly, 

the link between heart disease and stroke risk, the critical role of managing hypertension, and the 

relevance of maintaining a healthy BMI and monitoring blood glucose levels were emphasized for 

individuals aged 0-65. 

 

The comprehensive analysis of various factors influencing stroke occurrence reveals distinct 

patterns and risk associations. Figure 3.1 demonstrates a non-uniform distribution of strokes by 

age, indicating two peaks around 55 and 80 years old, suggesting different risk factors for younger 

and older individuals. Figure 3.2 reinforces the significance of age and hypertension as major risk 

factors, emphasizing their cumulative effect on stroke risk. Figure 3.3 highlights the interplay 

between heart disease, age, and strokes, underscoring the heightened risk in older individuals with 

heart disease. Figure 3.4's heatmap illustrates the increased stroke risk with higher BMI and age, 

emphasizing the importance of managing obesity-related risk factors. Figure 3.5 explores stroke 

rates based on work type and age group, revealing higher rates in government jobs and 

emphasizing the impact of sedentary work and stress. Lastly, Figure 3.6(a) & (b) showcases the 

striking influence of smoking on stroke rates, surpassing the impact of urbanicity. Overall, these 

findings underscore the multifaceted nature of stroke risk, emphasizing the need for targeted 

prevention and management strategies based on individual risk profiles. 

 

The chi-square tests conducted on various categorical variables against the 'stroke' variable reveal 

compelling evidence of significant associations with the likelihood of experiencing a stroke. 

Smoking status, age, gender, hypertension, heart disease, marital status (ever married), work type, 

and residence type all demonstrate highly significant relationships with the occurrence of stroke. 

The consistently low p-values across these tests indicate that these factors are robust predictors of 
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stroke within the dataset. Specifically, smoking status, age, and hypertension emerge as 

particularly strong predictors, emphasizing their importance in understanding and potentially 

mitigating the risk of stroke. This comprehensive analysis underscores the multifaceted nature of 

stroke risk factors and contributes valuable insights for healthcare professionals and policymakers 

in devising targeted prevention and intervention strategies. 

 

Addressing the questions posed, the incidence of heart disease, high blood pressure, and brain 

strokes in the elderly population was discussed. It was highlighted that the elderly often exhibits a 

notable incidence of cardiovascular risk factors, with heart disease and hypertension being 

prevalent. Additionally, the intricate relationships between heart disease, hypertension, and brain 

strokes in older individuals were explored. The analysis confirmed that these conditions serve as 

primary risk factors for strokes in the elderly, emphasizing the need for effective management and 

early intervention. 

 

Lifestyle factors, including smoking status and BMI, were investigated for their impact on the 

frequency of brain strokes. The findings revealed that these factors indeed play a discernible role, 

with smoking and higher BMI contributing to an increased risk of cardiovascular events, including 

strokes. Exploring additional variables such as gender, average blood glucose levels, and type of 

residence in influencing the risk of brain strokes in seniors was addressed. The variable importance 

plot indicated that these variables significantly contribute to stroke risk in the elderly, providing a 

comprehensive understanding of the factors at play. 

 

While acknowledging the limitations of oversampled data and potential biases in the models, the 

thesis provided substantial insights into stroke prediction models for different age groups. The 

consistent identification of influential features suggests their robust impact on stroke prediction, 

paving the way for targeted interventions and public health initiatives. The limitations of the study 

were duly recognized, and future research directions were proposed, emphasizing the need for 

validation across diverse datasets and exploration of additional factors. 

 

In conclusion, this thesis has significantly contributed to the understanding of consistent predictors 

for stroke risk in distinct age groups. The identified features provide a robust set of variables that 

collectively enhance our ability to predict and mitigate stroke risk in specific demographics, 

offering valuable guidance for healthcare professionals and policymakers. 
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